論文の概要: How Do Students Interact with an LLM-powered Virtual Teaching Assistant in Different Educational Settings?
- arxiv url: http://arxiv.org/abs/2407.17429v2
- Date: Thu, 25 Jul 2024 20:16:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 15:28:39.510762
- Title: How Do Students Interact with an LLM-powered Virtual Teaching Assistant in Different Educational Settings?
- Title(参考訳): 学生は、異なる教育環境下でLLMを利用した仮想教科アシスタントとどのように相互作用するか?
- Authors: Pratyusha Maiti, Ashok K. Goel,
- Abstract要約: LLMを利用したバーチャル教育アシスタントであるJill Watson氏は、学生の質問に答えて、インストラクターが提供するコースウェア上での会話を延長する。
本稿では,Jill と学生の相互作用を,複数の科目や大学間で分析する。
幅広い認知的要求をサポートすることで、ジルは生徒に高度な高次認知的質問への参加を促している。
- 参考スコア(独自算出の注目度): 3.9134031118910264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Jill Watson, a virtual teaching assistant powered by LLMs, answers student questions and engages them in extended conversations on courseware provided by the instructors. In this paper, we analyze student interactions with Jill across multiple courses and colleges, focusing on the types and complexity of student questions based on Bloom's Revised Taxonomy and tool usage patterns. We find that, by supporting a wide range of cognitive demands, Jill encourages students to engage in sophisticated, higher-order cognitive questions. However, the frequency of usage varies significantly across deployments, and the types of questions asked depend on course-specific contexts. These findings pave the way for future work on AI-driven educational tools tailored to individual learning styles and course structure, potentially enhancing both the teaching and learning experience in classrooms.
- Abstract(参考訳): LLMを利用したバーチャル教育アシスタントであるJill Watson氏は、学生の質問に答えて、インストラクターが提供するコースウェア上での会話を延長する。
本稿では,ブルームの改訂分類法とツール利用パターンに基づいて,複数の科目や大学におけるジルとの相互作用を分析し,学生の質問のタイプと複雑さに着目した。
幅広い認知的要求をサポートすることで、ジルは生徒に高度な高次認知的質問への参加を促している。
しかし、利用頻度はデプロイメント毎に大きく異なり、質問の種類はコース固有のコンテキストに依存します。
これらの知見は、個別の学習スタイルとコース構造に合わせたAI駆動型教育ツールの今後の研究の道を開くもので、教室での教育と学習経験の両方を強化する可能性がある。
関連論文リスト
- Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
本稿では,教師と学生の対話における知識追跡(KT)の最初の試みについて述べる。
そこで本研究では,対話の各ターンに係わる知識コンポーネントやスキルを同定する手法を提案する。
次に,得られたラベル付きデータに様々なKT手法を適用し,対話全体を通して学生の知識レベルを追跡する。
論文 参考訳(メタデータ) (2024-09-24T22:31:39Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - Large Language Model-Driven Classroom Flipping: Empowering
Student-Centric Peer Questioning with Flipped Interaction [3.1473798197405953]
本稿では,大規模言語モデルにおけるフリップ相互作用に基づく教室のフリップの教育的アプローチについて検討する。
欠落した相互作用は、プロンプトに対する回答ではなく、言語モデルを使用して質問を生成することである。
本稿では,クイズ・クイズ・ルーチンとクイズ・プイズ・クイズ・ルーチンとを用いて,クイズ・クイズ・クイズ・クイズとアクイズ・クイズ・クイズ・インシデント・エンジニアリングを統合するワークフローを提案する。
論文 参考訳(メタデータ) (2023-11-14T15:48:19Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
質問応答の指数的増加(QA)は、あらゆる自然言語処理(NLP)コースにおいて必須のトピックとなっている。
本稿では、QA教育のプラットフォームとしてUKP-SQuAREを紹介する。
学生は様々な視点から様々なQAモデルを実行、比較、分析することができる。
論文 参考訳(メタデータ) (2023-05-31T11:29:04Z) - Multimodal Lecture Presentations Dataset: Understanding Multimodality in
Educational Slides [57.86931911522967]
学習内容のマルチモーダル理解における機械学習モデルの能力を検証する。
このデータセットには,180時間以上のビデオと9000時間以上のスライドが,各科目から10人の講師が参加している。
マルチモーダル・トランスフォーマーであるPolyViLTを導入する。
論文 参考訳(メタデータ) (2022-08-17T05:30:18Z) - A literature survey on student feedback assessment tools and their usage
in sentiment analysis [0.0]
我々は,Kahoot!, Mentimeter, Padlet, pollingなどのクラス内フィードバック評価手法の有効性を評価する。
学生の質的なフィードバックコメントから明確な提案を抽出する感情分析モデルを提案する。
論文 参考訳(メタデータ) (2021-09-09T06:56:30Z) - Real-Time Cognitive Evaluation of Online Learners through Automatically
Generated Questions [0.0]
本稿では,ビデオ講義から質問を自動的に生成する手法を提案する。
生成された質問は、学習者の低レベルの認知能力を評価することを目的としている。
論文 参考訳(メタデータ) (2021-06-06T05:45:56Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z) - Educational Question Mining At Scale: Prediction, Analysis and
Personalization [35.42197158180065]
大規模に教育的な問題から洞察を抽出する枠組みを提案する。
我々は最先端のベイズ深層学習法、特に部分変分オートエンコーダ(p-VAE)を利用する。
提案したフレームワークを,数万の質問と数千万の回答をオンライン教育プラットフォームから収集した実世界のデータセットに適用する。
論文 参考訳(メタデータ) (2020-03-12T19:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。