論文の概要: YouLeQD: Decoding the Cognitive Complexity of Questions and Engagement in Online Educational Videos from Learners' Perspectives
- arxiv url: http://arxiv.org/abs/2501.11712v1
- Date: Mon, 20 Jan 2025 19:54:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:10.411633
- Title: YouLeQD: Decoding the Cognitive Complexity of Questions and Engagement in Online Educational Videos from Learners' Perspectives
- Title(参考訳): YouLeQD:学習者の視点によるオンライン教育ビデオにおける質問・エンゲージメントの認知的複雑さのデコード
- Authors: Nong Ming, Sachin Sharma, Jiho Noh,
- Abstract要約: YouLeQDデータセットには、YouTubeの講義ビデオコメントから学習者が提示した質問が含まれている。
質問を検知し,その認知的複雑性を分析するために,RoBERTaに基づく2つの分類モデルを開発した。
- 参考スコア(独自算出の注目度): 1.2084539012992408
- License:
- Abstract: Questioning is a fundamental aspect of education, as it helps assess students' understanding, promotes critical thinking, and encourages active engagement. With the rise of artificial intelligence in education, there is a growing interest in developing intelligent systems that can automatically generate and answer questions and facilitate interactions in both virtual and in-person education settings. However, to develop effective AI models for education, it is essential to have a fundamental understanding of questioning. In this study, we created the YouTube Learners' Questions on Bloom's Taxonomy Dataset (YouLeQD), which contains learner-posed questions from YouTube lecture video comments. Along with the dataset, we developed two RoBERTa-based classification models leveraging Large Language Models to detect questions and analyze their cognitive complexity using Bloom's Taxonomy. This dataset and our findings provide valuable insights into the cognitive complexity of learner-posed questions in educational videos and their relationship with interaction metrics. This can aid in the development of more effective AI models for education and improve the overall learning experience for students.
- Abstract(参考訳): 質問は、学生の理解を評価し、批判的思考を促進し、活発なエンゲージメントを促進するため、教育の基本的な側面である。
教育における人工知能の台頭に伴い、質問を自動生成し、回答し、バーチャルおよび対人両方の教育環境での対話を促進するインテリジェントシステム開発への関心が高まっている。
しかし,教育に有効なAIモデルを開発するためには,質問に対する根本的な理解が不可欠である。
本研究では,ブルームの分類分類データセット (YouLeQD) に関するYouTube Learners' Questionsを作成した。
このデータセットと合わせて,大規模言語モデルを用いたRoBERTaに基づく2つの分類モデルを構築し,Bloomの分類法を用いて質問を検出し,その認知複雑性を分析した。
このデータセットと我々の研究結果は、教育ビデオにおける学習者が提示する質問の認知的複雑さとその相互作用指標との関係に関する貴重な知見を提供する。
これにより、教育のためのより効果的なAIモデルの開発を支援し、学生の全体的な学習体験を改善することができる。
関連論文リスト
- Integrating Cognitive AI with Generative Models for Enhanced Question Answering in Skill-based Learning [3.187381965457262]
本稿では,認知AIと生成AIを融合してこれらの課題に対処する手法を提案する。
我々は、構造化知識表現、TMK(Task-Method-Knowledge)モデルを用いて、オンライン知識ベースのAIコースで教えられたスキルをエンコードする。
論文 参考訳(メタデータ) (2024-07-28T04:21:22Z) - How Do Students Interact with an LLM-powered Virtual Teaching Assistant in Different Educational Settings? [3.9134031118910264]
LLMを利用したバーチャル教育アシスタントであるJill Watson氏は、学生の質問に答えて、インストラクターが提供するコースウェア上での会話を延長する。
本稿では,Jill と学生の相互作用を,複数の科目や大学間で分析する。
幅広い認知的要求をサポートすることで、ジルは生徒に高度な高次認知的質問への参加を促している。
論文 参考訳(メタデータ) (2024-07-15T01:22:50Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Representing Pedagogic Content Knowledge Through Rough Sets [0.0]
この論文は、論理モデルを構築したり、教師を支援するための意味を意識したAIソフトウェアを開発することを目的としている。
提案手法の主な利点は、あいまいさ、マルチモーダリティをコヒーレントに扱う能力である。
論文 参考訳(メタデータ) (2024-02-26T11:00:45Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
大規模言語モデル(LLM)は、個々の要求を解釈することでこの問題を解決する可能性を提供する。
本稿では, 数学, 文章, プログラミング, 推論, 知識に基づく質問応答など, 教育能力に関する最近のLLM研究を概観する。
論文 参考訳(メタデータ) (2023-12-27T14:37:32Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
本稿では,AIIA(Artificial Intelligence-Enabled Intelligent Assistant)という,高等教育におけるパーソナライズおよび適応学習のための新しいフレームワークを提案する。
AIIAシステムは、高度なAIと自然言語処理(NLP)技術を活用して、対話的で魅力的な学習プラットフォームを構築する。
論文 参考訳(メタデータ) (2023-09-19T19:31:15Z) - AI Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in
CS Education [8.898863361318817]
4つの異なるチャットボットを備えた新しい学習環境を開発し,実装し,評価する。
これらの役割は、学習者(能力、自律性、関連性)の3つの本質的な心理的ニーズを満たす。
このシステムは、質問に基づく学習パラダイムを採用し、学生に質問をし、解決策を求め、その好奇心を探求するよう促す。
論文 参考訳(メタデータ) (2023-08-08T02:13:44Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
質問応答の指数的増加(QA)は、あらゆる自然言語処理(NLP)コースにおいて必須のトピックとなっている。
本稿では、QA教育のプラットフォームとしてUKP-SQuAREを紹介する。
学生は様々な視点から様々なQAモデルを実行、比較、分析することができる。
論文 参考訳(メタデータ) (2023-05-31T11:29:04Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
パーソナライゼーションとアクティブラーニングは、学習の成功の鍵となる側面です。
私たちは2つの人気のあるオンライン学習プラットフォームの学習結果の比較正面調査を実施します。
論文 参考訳(メタデータ) (2021-04-15T20:40:24Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。