論文の概要: CityX: Controllable Procedural Content Generation for Unbounded 3D Cities
- arxiv url: http://arxiv.org/abs/2407.17572v1
- Date: Wed, 24 Jul 2024 18:05:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 16:09:00.078232
- Title: CityX: Controllable Procedural Content Generation for Unbounded 3D Cities
- Title(参考訳): CityX: 無制限3D都市のための制御可能な手続き型コンテンツ生成
- Authors: Shougao Zhang, Mengqi Zhou, Yuxi Wang, Chuanchen Luo, Rongyu Wang, Yiwei Li, Xucheng Yin, Zhaoxiang Zhang, Junran Peng,
- Abstract要約: そこで我々は,CityXという新しいマルチモーダル制御可能な手続き型コンテンツ生成手法を提案する。
OSM、セマンティックマップ、衛星画像など、複数のレイアウト条件でガイドされるリアルで無拘束の3D都市生成を強化する。
この効果的なフレームワークを通じて、CityXは3Dシーン生成のための革新的なエコシステムを構築する可能性を示している。
- 参考スコア(独自算出の注目度): 55.737060358043536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating a realistic, large-scale 3D virtual city remains a complex challenge due to the involvement of numerous 3D assets, various city styles, and strict layout constraints. Existing approaches provide promising attempts at procedural content generation to create large-scale scenes using Blender agents. However, they face crucial issues such as difficulties in scaling up generation capability and achieving fine-grained control at the semantic layout level. To address these problems, we propose a novel multi-modal controllable procedural content generation method, named CityX, which enhances realistic, unbounded 3D city generation guided by multiple layout conditions, including OSM, semantic maps, and satellite images. Specifically, the proposed method contains a general protocol for integrating various PCG plugins and a multi-agent framework for transforming instructions into executable Blender actions. Through this effective framework, CityX shows the potential to build an innovative ecosystem for 3D scene generation by bridging the gap between the quality of generated assets and industrial requirements. Extensive experiments have demonstrated the effectiveness of our method in creating high-quality, diverse, and unbounded cities guided by multi-modal conditions. Our project page: https://cityx-lab.github.io.
- Abstract(参考訳): 現実的で大規模な3D仮想都市を生成することは、多くの3D資産、様々な都市スタイル、厳格なレイアウト制約が関与しているため、依然として複雑な課題である。
既存のアプローチは、Blenderエージェントを使用して大規模なシーンを作成するための手続き的コンテンツ生成のための有望な試みを提供する。
しかし、生成能力のスケールアップの難しさや、セマンティックレイアウトのレベルできめ細かい制御を実現するといった、重要な問題に直面している。
このような問題に対処するために,OSM,セマンティックマップ,衛星画像などを含む複数レイアウト条件でガイドされるリアルで非有界な3D都市生成を向上する,CityXという,マルチモーダル制御可能なプロシージャコンテンツ生成手法を提案する。
具体的には、様々なPCGプラグインを統合するための一般的なプロトコルと、命令を実行可能なBlenderアクションに変換するためのマルチエージェントフレームワークを含む。
この効果的な枠組みを通じて、CityXは、生成された資産の品質と産業要件のギャップを埋めることで、3Dシーン生成のための革新的なエコシステムを構築する可能性を示している。
マルチモーダル条件で案内された高品質・多様・無制限の都市を創出する上で,本手法の有効性を実証した。
プロジェクトページはhttps://cityx-lab.github.ioです。
関連論文リスト
- GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation [75.39457097832113]
本稿では,インタラクティブなポイントクラウド構造ラテント空間を備えたスケーラブルで高品質な3D生成を実現する,新しい3D生成フレームワークを提案する。
本フレームワークでは,複数ビューのRGB-D(epth)-N(ormal)レンダリングを入力として使用する変分オートエンコーダを,3次元形状情報を保存する独自のラテント空間設計を用いて構成する。
提案手法であるGaussianAnythingは,複数モード条件付き3D生成をサポートし,ポイントクラウド,キャプション,シングル/マルチビュー画像入力を可能にする。
論文 参考訳(メタデータ) (2024-11-12T18:59:32Z) - CityCraft: A Real Crafter for 3D City Generation [25.7885801163556]
CityCraftは、都市シーン生成の多様性と品質の両方を強化するために設計された革新的なフレームワークである。
提案手法は,まず拡散変圧器(DiT)モデルを用いて,多種かつ制御可能な2次元都市レイアウトを生成する。
生成したレイアウトと都市計画に基づいて,Blenderとアセット検索モジュールを用いて,正確なアセット配置とシーン構築を行う。
論文 参考訳(メタデータ) (2024-06-07T14:49:00Z) - Coin3D: Controllable and Interactive 3D Assets Generation with Proxy-Guided Conditioning [52.81032340916171]
Coin3Dを使えば、ユーザーは基本的な形状から組み立てられた粗い幾何学的プロキシを使って3D生成を制御できる。
本手法は,3次元アセット生成タスクにおいて,制御性と柔軟性に優れる。
論文 参考訳(メタデータ) (2024-05-13T17:56:13Z) - Urban Architect: Steerable 3D Urban Scene Generation with Layout Prior [43.14168074750301]
合成3Dレイアウト表現をテキストから3Dのパラダイムに導入し、さらに先行として機能する。
単純な幾何学的構造と明示的な配置関係を持つ意味的プリミティブの集合から構成される。
また,様々なシーン編集デモを行い,ステアブルな都市景観生成の力を示す。
論文 参考訳(メタデータ) (2024-04-10T06:41:30Z) - SceneX:Procedural Controllable Large-scale Scene Generation via Large-language Models [53.961002112433576]
本稿では,デザイナーのテキスト記述に従って高品質なプロシージャモデルを自動生成する大規模シーン生成フレームワークであるSceneXを紹介する。
私たちのSceneXは、微妙な幾何学的レイアウトと構造を持つ2.5km×2.5kmの都市を生成でき、プロのPCGエンジニアの数週間の時間を大幅に短縮して、普通のユーザにとっては数時間に過ぎません。
論文 参考訳(メタデータ) (2024-03-23T03:23:29Z) - GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting [52.150502668874495]
GALA3D, GALA3D, 生成3D GAussian, LAyout-guided control, for effective compositional text-to-3D generation。
GALA3Dは、最先端のシーンレベルの3Dコンテンツ生成と制御可能な編集のための、ユーザフレンドリーでエンドツーエンドのフレームワークである。
論文 参考訳(メタデータ) (2024-02-11T13:40:08Z) - CityGen: Infinite and Controllable 3D City Layout Generation [26.1563802843242]
CityGenは、無限で多様性があり、制御可能な3D都市レイアウト生成のための新しいエンドツーエンドフレームワークである。
CityGenは、FIDおよびKIDの下での最先端のSOTA(State-of-the-art)のパフォーマンスを達成し、無限に制御可能な3D都市レイアウトを生成する。
論文 参考訳(メタデータ) (2023-12-03T21:16:37Z) - CityDreamer: Compositional Generative Model of Unbounded 3D Cities [44.203932215464214]
CityDreamerは、非有界な3D都市向けに特別に設計された合成モデルである。
我々は、鳥の視線シーン表現を採用し、インスタンス指向と物指向のニューラルフィールドの両方にボリュームレンダリングを採用する。
CityDreamerは、現実的な3D都市を生成するだけでなく、生成された都市内の局所的な編集でも、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-09-01T17:57:02Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
我々は、前例のない次元に拡大することで、3次元形状生成において画期的なブレークスルーを示す。
現在までに最大の3次元形状生成モデルとしてArgus-3Dが確立されている。
論文 参考訳(メタデータ) (2023-06-20T13:01:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。