論文の概要: Long-term Fairness in Ride-Hailing Platform
- arxiv url: http://arxiv.org/abs/2407.17839v1
- Date: Thu, 25 Jul 2024 07:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:48:09.329427
- Title: Long-term Fairness in Ride-Hailing Platform
- Title(参考訳): ライドヒーリングプラットフォームの長期公正性
- Authors: Yufan Kang, Jeffrey Chan, Wei Shao, Flora D. Salim, Christopher Leckie,
- Abstract要約: 本稿では,ライドシェアリングが直面する公平性の問題を軽減するために,動的マルコフ決定プロセスモデルを提案する。
提案手法は既存の最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 20.276533196467092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matching in two-sided markets such as ride-hailing has recently received significant attention. However, existing studies on ride-hailing mainly focus on optimising efficiency, and fairness issues in ride-hailing have been neglected. Fairness issues in ride-hailing, including significant earning differences between drivers and variance of passenger waiting times among different locations, have potential impacts on economic and ethical aspects. The recent studies that focus on fairness in ride-hailing exploit traditional optimisation methods and the Markov Decision Process to balance efficiency and fairness. However, there are several issues in these existing studies, such as myopic short-term decision-making from traditional optimisation and instability of fairness in a comparably longer horizon from both traditional optimisation and Markov Decision Process-based methods. To address these issues, we propose a dynamic Markov Decision Process model to alleviate fairness issues currently faced by ride-hailing, and seek a balance between efficiency and fairness, with two distinct characteristics: (i) a prediction module to predict the number of requests that will be raised in the future from different locations to allow the proposed method to consider long-term fairness based on the whole timeline instead of consider fairness only based on historical and current data patterns; (ii) a customised scalarisation function for multi-objective multi-agent Q Learning that aims to balance efficiency and fairness. Extensive experiments on a publicly available real-world dataset demonstrate that our proposed method outperforms existing state-of-the-art methods.
- Abstract(参考訳): 配車サービスなどの二国間市場におけるマッチングは、最近大きな注目を集めている。
しかし、ライドシェアリングに関する既存の研究は主に効率の最適化に重点を置いており、ライドシェアリングにおける公平性の問題も無視されている。
配車サービスにおける公平性の問題には、ドライバー間の大きな収入差や、異なる場所における乗客待ち時間のばらつきが含まれており、経済的および倫理的側面に潜在的に影響を及ぼす可能性がある。
配車サービスにおける公正性に焦点を当てた最近の研究は、効率性と公正性のバランスをとるために、従来の最適化手法とマルコフ決定プロセスを活用している。
しかし、これらの既存の研究には、伝統的な最適化からの短期的な意思決定や、伝統的な最適化とマルコフ決定プロセスに基づく手法から、より長い視野で、公平性の不安定性など、いくつかの問題がある。
これらの問題に対処するため、我々は、現在ライドシェアリングが直面している公正性問題を軽減するための動的マルコフ決定プロセスモデルを提案し、効率性と公正性のバランスを、2つの異なる特性で求めている。
一 従来及び現在のデータパターンのみに基づいて公正を考慮せずに、スケジュール全体に基づいて長期公正を考慮できるように、将来異なる場所から発生する要求数を予測するための予測モジュール。
(II) 効率と公平性のバランスを図る多目的多目的Qラーニングのためのカスタマイズされたスカラー化関数。
公開されている実世界のデータセットに対する大規模な実験により、提案手法が既存の最先端手法より優れていることが示された。
関連論文リスト
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - Fairness-Enhancing Vehicle Rebalancing in the Ride-hailing System [7.531863938542706]
配車産業の急速な成長は、世界中の都市交通に革命をもたらした。
その利益にもかかわらず、保存されていない地域社会が手頃な価格の配車サービスへのアクセシビリティに制限されているため、株式の懸念が生じる。
本稿では,新しい車両再バランス手法により,アルゴリズムとライダーの公正性を両立することに焦点を当てる。
論文 参考訳(メタデータ) (2023-12-29T23:02:34Z) - Understanding Fairness Surrogate Functions in Algorithmic Fairness [21.555040357521907]
フェアネスの定義とフェアネスのサロゲート関数の間には、サロゲートとフェアネスのギャップがあることが示される。
我々は、不公平を緩和するギャップを反復的に減少させる「バランスド・サロゲート」という、新規で一般的なアルゴリズムを精査する。
論文 参考訳(メタデータ) (2023-10-17T12:40:53Z) - Adapting Static Fairness to Sequential Decision-Making: Bias Mitigation Strategies towards Equal Long-term Benefit Rate [41.51680686036846]
逐次意思決定におけるバイアスに対処するため,Equal Long-term Benefit Rate (ELBERT) という長期公正性の概念を導入する。
ELBERTは、以前の長期公正の概念に見られる時間的差別問題に効果的に対処する。
ELBERT-POは高い有効性を維持しながらバイアスを著しく減少させることを示した。
論文 参考訳(メタデータ) (2023-09-07T01:10:01Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
機械学習アプリケーションにおける差別の原因を明らかにするための包括的アプローチを提案する。
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated region。
これにより、各特徴がバイアスに影響を及ぼすかどうかを測定するために強制的公正性を使用する凝集系を導出することができる。
論文 参考訳(メタデータ) (2023-08-22T00:10:23Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Fairness and Explainability: Bridging the Gap Towards Fair Model
Explanations [12.248793742165278]
我々は、説明に基づく手続き指向公正の新たな視点を提示することにより、公正性と説明可能性のギャップを埋める。
本稿では,複数の目的を同時に達成する包括的公正性アルゴリズム (CFA) を提案する。
論文 参考訳(メタデータ) (2022-12-07T18:35:54Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
フェアネスとロバストネスの間に二分法が存在することを示し、フェアネスを達成するとモデルロバストネスを減少させる。
非線形モデルと異なるアーキテクチャの実験は、複数の視覚領域における理論的発見を検証する。
フェアネスとロバストネスの良好なトレードオフを達成するためのモデルを構築するための,シンプルで効果的なソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-21T19:55:35Z) - ARISE: ApeRIodic SEmi-parametric Process for Efficient Markets without
Periodogram and Gaussianity Assumptions [91.3755431537592]
我々は、効率的な市場を調査するためのApeRI-miodic(ARISE)プロセスを提案する。
ARISEプロセスは、いくつかの既知のプロセスの無限サムとして定式化され、周期スペクトル推定を用いる。
実際に,実世界の市場の効率性を明らかにするために,ARISE関数を適用した。
論文 参考訳(メタデータ) (2021-11-08T03:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。