論文の概要: Amortized Active Learning for Nonparametric Functions
- arxiv url: http://arxiv.org/abs/2407.17992v1
- Date: Thu, 25 Jul 2024 12:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:08:56.348036
- Title: Amortized Active Learning for Nonparametric Functions
- Title(参考訳): 非パラメトリック関数に対する補正型アクティブラーニング
- Authors: Cen-You Li, Marc Toussaint, Barbara Rakitsch, Christoph Zimmer,
- Abstract要約: アクティブラーニング(英: Active Learning, AL)は、最も情報性の高いデータを選択するためのシーケンシャルラーニングスキームである。
そこで本研究では,実データなしで事前トレーニングを行うニューラルネットワークを用いて,新たなデータを提案するアモータイズAL手法を提案する。
- 参考スコア(独自算出の注目度): 23.406516455945653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning (AL) is a sequential learning scheme aiming to select the most informative data. AL reduces data consumption and avoids the cost of labeling large amounts of data. However, AL trains the model and solves an acquisition optimization for each selection. It becomes expensive when the model training or acquisition optimization is challenging. In this paper, we focus on active nonparametric function learning, where the gold standard Gaussian process (GP) approaches suffer from cubic time complexity. We propose an amortized AL method, where new data are suggested by a neural network which is trained up-front without any real data (Figure 1). Our method avoids repeated model training and requires no acquisition optimization during the AL deployment. We (i) utilize GPs as function priors to construct an AL simulator, (ii) train an AL policy that can zero-shot generalize from simulation to real learning problems of nonparametric functions and (iii) achieve real-time data selection and comparable learning performances to time-consuming baseline methods.
- Abstract(参考訳): アクティブラーニング(英: Active Learning, AL)は、最も情報性の高いデータを選択するためのシーケンシャルラーニングスキームである。
ALはデータ消費を減らし、大量のデータをラベル付けするコストを回避する。
しかし、ALはモデルをトレーニングし、各選択に対する取得最適化を解決する。
モデルのトレーニングや取得の最適化が難しい場合には、コストがかかります。
本稿では,金標準ガウス過程 (GP) のアプローチが3次時間複雑性に悩まされるような,アクティブな非パラメトリック関数学習に焦点を当てる。
本稿では,実データなしで事前トレーニングを行うニューラルネットワークを用いて,新たなデータを提案するアモータイズAL法を提案する(第1報)。
提案手法は繰り返しモデルトレーニングを回避し,ALデプロイメント中に取得最適化を必要としない。
我が家
i) 関数先行としてGPを使用し、ALシミュレータを構築する。
二 シミュレーションから非パラメトリック関数の実学習問題へのゼロショット一般化が可能なALポリシーを訓練し、
三 リアルタイムデータ選択と学習性能を時間消費ベースライン法に匹敵するものにすること。
関連論文リスト
- Not Everything is All You Need: Toward Low-Redundant Optimization for Large Language Model Alignment [126.34547428473968]
大規模言語モデル(LLM)は、複雑なタスクやシナリオにおいて、人間の好みに合わせるのに依然として苦労しています。
我々は、最も有用な教師付き信号を用いて、最も関連性の高いニューロンを最適化することに焦点を当てた、textbfALLOという低輝度アライメント手法を提案する。
10個のデータセットに対する実験結果から、ALLOの有効性が示された。
論文 参考訳(メタデータ) (2024-06-18T13:34:40Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Learning-Rate-Free Learning by D-Adaptation [18.853820404058983]
D-Adaptationは、凸リプシッツ関数に対する最適収束率を達成する学習率を自動的に設定するアプローチである。
本手法のSGDおよびAdam変種に対する広範囲な実験を行い,手作業による学習率を1ダース以上の多様な機械学習問題に対して自動でマッチングする手法を提案する。
論文 参考訳(メタデータ) (2023-01-18T19:00:50Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
Processes [80.89852729380425]
そこで本研究では,最小限の最小残差である$tilde O(dsqrtH3K)$を計算効率よく実現したアルゴリズムを提案する。
我々の研究は線形 MDP を用いた最適 RL に対する完全な答えを提供する。
論文 参考訳(メタデータ) (2022-12-12T18:58:59Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive
Least-Squares [8.443742714362521]
我々は,従来のデータポイントの予測にほとんど変化しない方向にパラメータを変更しながら,すべての新しいデータポイントに完全に適合するワンパス学習アルゴリズムを開発した。
我々のアルゴリズムは、インクリメンタル・プリンシパル・コンポーネント分析(IPCA)を用いてストリーミングデータの構造を利用して、メモリを効率的に利用する。
本実験では,提案手法の有効性をベースラインと比較した。
論文 参考訳(メタデータ) (2022-07-28T02:01:31Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
トレーニングデータのサブセットのみをラベル付けするバッチアクティブな学習問題を考察する。
制約付き最適化を用いて学習問題を定式化し、各制約はラベル付きサンプルにモデルの性能を拘束する。
数値実験により,提案手法は最先端の能動学習法と同等かそれ以上に機能することを示した。
論文 参考訳(メタデータ) (2022-02-08T19:18:49Z) - GLISTER: Generalization based Data Subset Selection for Efficient and
Robust Learning [11.220278271829699]
GeneraLIzationベースのデータSubset selecTion for Efficient and Robust LearningフレームワークであるGlisterを紹介します。
パラメータ更新とともに反復的にデータ選択を行う反復オンラインアルゴリズムglister-onlineを提案する。
筆者らのフレームワークは,(a) と (c) の場合に) 効率, 精度の両面で向上し, 他の最先端の堅牢な学習アルゴリズムと比較して, より効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-19T08:41:34Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
目的の新たな微分可能近似に基づく最適な合成データ生成法を提案する。
提案手法は,学習データ生成の高速化(最大50Times$)と,実世界のテストデータセットの精度向上(+8.7%$)を実現している。
論文 参考訳(メタデータ) (2020-08-16T11:36:11Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
ガウス過程に不確実性のある2つの新しい能動学習アルゴリズムを提案する。
提案手法は不確実性の影響を取り入れ,予測性能の向上を実現する。
本手法は, 複合胴体の自動形状制御における予測モデルの改善に応用されている。
論文 参考訳(メタデータ) (2020-04-23T02:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。