論文の概要: RestoreAgent: Autonomous Image Restoration Agent via Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2407.18035v1
- Date: Thu, 25 Jul 2024 13:29:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:58:54.100597
- Title: RestoreAgent: Autonomous Image Restoration Agent via Multimodal Large Language Models
- Title(参考訳): RestoreAgent:マルチモーダル大言語モデルによる自律的画像復元エージェント
- Authors: Haoyu Chen, Wenbo Li, Jinjin Gu, Jingjing Ren, Sixiang Chen, Tian Ye, Renjing Pei, Kaiwen Zhou, Fenglong Song, Lei Zhu,
- Abstract要約: マルチモーダルな大言語モデルを活用したインテリジェントな画像復元システムであるRestoreAgentを紹介する。
RestoreAgentは、入力画像の劣化の種類と程度を自律的に評価し、(1)適切な復元タスクを決定すること、(2)タスクシーケンスを最適化すること、(3)最も適切なモデルを選択すること、(4)復元を実行することを通じて復元を行う。
実験結果は,RestoreAgentの複雑な劣化処理における優れた性能を示し,人間の専門家を上回った。
- 参考スコア(独自算出の注目度): 45.88103575837924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural images captured by mobile devices often suffer from multiple types of degradation, such as noise, blur, and low light. Traditional image restoration methods require manual selection of specific tasks, algorithms, and execution sequences, which is time-consuming and may yield suboptimal results. All-in-one models, though capable of handling multiple tasks, typically support only a limited range and often produce overly smooth, low-fidelity outcomes due to their broad data distribution fitting. To address these challenges, we first define a new pipeline for restoring images with multiple degradations, and then introduce RestoreAgent, an intelligent image restoration system leveraging multimodal large language models. RestoreAgent autonomously assesses the type and extent of degradation in input images and performs restoration through (1) determining the appropriate restoration tasks, (2) optimizing the task sequence, (3) selecting the most suitable models, and (4) executing the restoration. Experimental results demonstrate the superior performance of RestoreAgent in handling complex degradation, surpassing human experts. Furthermore, the system modular design facilitates the fast integration of new tasks and models, enhancing its flexibility and scalability for various applications.
- Abstract(参考訳): モバイルデバイスが捉えた自然画像は、ノイズ、ぼかし、低光など、複数のタイプの劣化に悩まされることが多い。
従来の画像復元法では、特定のタスク、アルゴリズム、実行シーケンスを手動で選択する必要がある。
オールインワンモデルは複数のタスクを処理できるが、通常は限られた範囲しかサポートせず、データ分散の幅が広いため、非常にスムーズで低忠実な結果をもたらすことが多い。
これらの課題に対処するために、まず複数の劣化を伴う画像復元のための新しいパイプラインを定義し、次にマルチモーダルな大規模言語モデルを活用したインテリジェントな画像復元システムであるRestoreAgentを紹介した。
RestoreAgentは、入力画像の劣化の種類と程度を自律的に評価し、(1)適切な復元タスクを決定すること、(2)タスクシーケンスを最適化すること、(3)最も適切なモデルを選択すること、(4)復元を実行することを通じて復元を行う。
実験結果は,RestoreAgentの複雑な劣化処理における優れた性能を示し,人間の専門家を上回った。
さらに、システムモジュール設計により、新しいタスクやモデルの迅速な統合が容易になり、様々なアプリケーションに対する柔軟性とスケーラビリティが向上する。
関連論文リスト
- Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
これは、モデルを一連の劣化ベースでトレーニングし、これらのベースがゼロショットで構成できる可能性のある劣化を除去する、新しいタスク設定である。
段階的に問題に対処するLLMに着想を得たCoR(Chain-of-Thought)を提案する。
CoRは、未知の複合劣化を段階的に除去するようモデルに指示する。
論文 参考訳(メタデータ) (2024-10-11T10:21:42Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
既存の統合手法は、マルチタスク学習問題として、多重劣化画像復元を扱う。
本稿では,複数のローランクアダプタ(LoRA)をベースとした汎用画像復元フレームワークを提案する。
本フレームワークは, 学習前の生成モデルを多段劣化復元のための共有コンポーネントとして利用し, 特定の劣化画像復元タスクに転送する。
論文 参考訳(メタデータ) (2024-09-30T11:16:56Z) - Training-Free Large Model Priors for Multiple-in-One Image Restoration [24.230376300759573]
大型モデル駆動画像復元フレームワーク(LMDIR)
我々のアーキテクチャは、グローバルな劣化知識を注入するクエリベースのプロンプトエンコーダ、分解対応トランスフォーマーブロックで構成されている。
この設計は、自動修復とユーザガイド修復の両方をサポートしながら、様々な劣化に対処するためのシングルステージトレーニングパラダイムを促進する。
論文 参考訳(メタデータ) (2024-07-18T05:40:32Z) - Restorer: Removing Multi-Degradation with All-Axis Attention and Prompt Guidance [12.066756224383827]
textbfRestorerはトランスフォーマーベースのオールインワン画像復元モデルである。
追加のトレーニングを必要とせずに、現実世界のシナリオで複合的な劣化を処理することができる。
推論中は効率が良く、現実世界の応用の可能性も示唆している。
論文 参考訳(メタデータ) (2024-06-18T13:18:32Z) - Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration [58.11518043688793]
MPerceiverは、オールインワン画像復元のための適応性、一般化性、忠実性を高める新しいアプローチである。
MPerceiverは、オールインワンIRの9つのタスクでトレーニングされ、ほとんどのタスクで最先端のタスク固有のメソッドより優れています。
論文 参考訳(メタデータ) (2023-12-05T17:47:11Z) - Multi-task Image Restoration Guided By Robust DINO Features [88.74005987908443]
DINOv2から抽出したロバストな特徴を利用したマルチタスク画像復元手法であるmboxtextbfDINO-IRを提案する。
まず,DINOV2の浅い特徴を動的に融合するPSF (Pixel-semantic fusion) モジュールを提案する。
これらのモジュールを統一された深層モデルに定式化することにより、モデルトレーニングを制約するために、DINO知覚の対照的な損失を提案する。
論文 参考訳(メタデータ) (2023-12-04T06:59:55Z) - Prompt-based Ingredient-Oriented All-in-One Image Restoration [0.0]
複数の画像劣化課題に対処する新しいデータ成分指向手法を提案する。
具体的には、エンコーダを用いて特徴をキャプチャし、デコーダを誘導するための劣化情報を含むプロンプトを導入する。
我々の手法は最先端技術と競争的に機能する。
論文 参考訳(メタデータ) (2023-09-06T15:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。