論文の概要: The Geometry of Queries: Query-Based Innovations in Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2407.18044v1
- Date: Thu, 25 Jul 2024 13:47:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:49:09.710606
- Title: The Geometry of Queries: Query-Based Innovations in Retrieval-Augmented Generation
- Title(参考訳): クエリの幾何学: 検索型生成におけるクエリベースのイノベーション
- Authors: Eric Yang, Jonathan Amar, Jong Ha Lee, Bhawesh Kumar, Yugang Jia,
- Abstract要約: 大きな言語モデル(LLM)は、慢性疾患に対する個人的健康管理を大幅に改善する可能性がある。
LLMは多様なインターネットデータから学んだパターンに基づいて応答を生成する。
Retrieval Augmented Generation (RAG)は、RAG応答における幻覚と不正確性を緩和する。
- 参考スコア(独自算出の注目度): 1.2839205715237014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital health chatbots powered by Large Language Models (LLMs) have the potential to significantly improve personal health management for chronic conditions by providing accessible and on-demand health coaching and question-answering. However, these chatbots risk providing unverified and inaccurate information because LLMs generate responses based on patterns learned from diverse internet data. Retrieval Augmented Generation (RAG) can help mitigate hallucinations and inaccuracies in LLM responses by grounding it on reliable content. However, efficiently and accurately retrieving most relevant set of content for real-time user questions remains a challenge. In this work, we introduce Query-Based Retrieval Augmented Generation (QB-RAG), a novel approach that pre-computes a database of potential queries from a content base using LLMs. For an incoming patient question, QB-RAG efficiently matches it against this pre-generated query database using vector search, improving alignment between user questions and the content. We establish a theoretical foundation for QB-RAG and provide a comparative analysis of existing retrieval enhancement techniques for RAG systems. Finally, our empirical evaluation demonstrates that QB-RAG significantly improves the accuracy of healthcare question answering, paving the way for robust and trustworthy LLM applications in digital health.
- Abstract(参考訳): LLM(Large Language Models)を利用したデジタルヘルスチャットボットは、アクセス可能でオンデマンドなヘルスコーチングと質問応答を提供することで、慢性的な状態における個人の健康管理を大幅に改善する可能性がある。
しかし、これらのチャットボットは、多様なインターネットデータから学習したパターンに基づいて、LSMが応答を生成するため、不確実で不正確な情報を提供するリスクがある。
Retrieval Augmented Generation (RAG) は、LLM応答における幻覚や不正確性を軽減し、信頼性の高い内容に基づいて解決する。
しかし、リアルタイムユーザーの質問に対して最も関連性の高いコンテンツを効率よく正確に検索することは、依然として課題である。
本研究では、LLMを用いてコンテンツベースから潜在的クエリのデータベースを事前計算する新しいアプローチである、クエリベースの検索拡張生成(QB-RAG)を紹介する。
入所患者の質問に対して、QB-RAGはベクターサーチを用いて、前生成したクエリデータベースと効率よくマッチングし、ユーザの質問とコンテンツとの整合性を改善する。
我々はQB-RAGの理論的基盤を確立し、RAGシステムにおける既存の検索強化技術の比較分析を行う。
最後に、我々はQB-RAGが医療質問応答の精度を大幅に向上させ、デジタルヘルスにおける堅牢で信頼性の高いLCM応用の道を開くことを実証した。
関連論文リスト
- RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering [61.19126689470398]
Long-form RobustQA (LFRQA)は、7つの異なるドメインにわたる26Kクエリと大きなコーパスをカバーする新しいデータセットである。
RAG-QAアリーナと人間の回答品質判断は高い相関関係にあることを示す。
最も競争力のあるLLMの回答の41.3%のみがLFRQAの回答に好まれており、RAG-QAアリーナは将来の研究の挑戦的な評価プラットフォームであることを示している。
論文 参考訳(メタデータ) (2024-07-19T03:02:51Z) - Enhancing Biomedical Knowledge Retrieval-Augmented Generation with Self-Rewarding Tree Search and Proximal Policy Optimization [50.26966969163348]
大規模言語モデル(LLM)は,検索増強世代(RAG)の進展に伴い,生物医学領域において大きな可能性を示した。
既存の検索強化アプローチは、様々なクエリやドキュメント、特に医療知識クエリに対処する上で、課題に直面している。
モンテカルロ木探索(MCTS)と自己回帰パラダイムに基づく自己回帰木探索(SeRTS)を提案する。
論文 参考訳(メタデータ) (2024-06-17T06:48:31Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - OLAPH: Improving Factuality in Biomedical Long-form Question Answering [15.585833125854418]
MedLFQAは、バイオメディカルドメインに関連する長文質問回答データセットを用いて再構成されたベンチマークデータセットである。
また,自動評価による現実性向上を実現するための,シンプルで斬新なフレームワークであるOLAPHを提案する。
以上の結果から,OLAPHフレームワークでトレーニングした7B LLMでは,医療専門家の回答に匹敵する回答が得られた。
論文 参考訳(メタデータ) (2024-05-21T11:50:16Z) - Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models [10.04914417538886]
大規模言語モデル(LLM)は、様々な言語タスクで顕著な成功を収めてきたが、幻覚や時間的ミスアライメントに悩まされている。
従来のtextitRetrieve-then-Read の代わりに,新しい textitDistill-Retrieve-Read フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-27T13:11:42Z) - HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses [20.635793525894872]
大規模言語モデル(LLM)の精度と信頼性を向上させるための仮説知識グラフ強化(HyKGE)フレームワークを開発する。
具体的には、HyKGEはゼロショット能力とLLMの豊富な知識を仮説出力で探索し、KGの可能な探索方向を拡張する。
2つのLLMターボを用いた2つの中国医学多重選択質問データセットと1つの中国のオープンドメイン医療Q&Aデータセットの実験は、精度と説明可能性の観点からHyKGEの優位性を実証した。
論文 参考訳(メタデータ) (2023-12-26T04:49:56Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [42.528771319248214]
大規模言語モデル(LLM)は、医療質問応答(QA)のようなドメイン固有のタスクでよく機能しないことが多い。
外部知識ベースから医学的事実を抽出し,LSMのクエリプロンプトに注入するための総合的検索手法を提案する。
Vicuna-7Bは44.46%から48.54%の精度向上を示した。
論文 参考訳(メタデータ) (2023-09-27T21:26:03Z) - A Review on Knowledge Graphs for Healthcare: Resources, Applications,
and Promises [53.48844796428081]
この研究は、医療知識グラフ(HKG)の最初の包括的なレビューを提供する。
HKG構築のためのパイプラインと重要なテクニックを要約し、一般的な利用方法も示す。
アプリケーションレベルでは、さまざまなヘルスドメインにわたるHKGの正常な統合を検討します。
論文 参考訳(メタデータ) (2023-06-07T21:51:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。