論文の概要: Cross-Vendor Reproducibility of Radiomics-based Machine Learning Models for Computer-aided Diagnosis
- arxiv url: http://arxiv.org/abs/2407.18060v1
- Date: Thu, 25 Jul 2024 14:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:49:09.694468
- Title: Cross-Vendor Reproducibility of Radiomics-based Machine Learning Models for Computer-aided Diagnosis
- Title(参考訳): コンピュータ支援診断のための放射能に基づく機械学習モデルのクロスベンダ再現性
- Authors: Jatin Chaudhary, Ivan Jambor, Hannu Aronen, Otto Ettala, Jani Saunavaara, Peter Boström, Jukka Heikkonen, Rajeev Kanth, Harri Merisaari,
- Abstract要約: マルチモーダル学習と機能融合による臨床診断支援の強化を目指す。
我々のSVMモデルは、PiradiomicsとMRCradiomicsの複合機能を利用して、Multi-Improdデータセット上でAUCの0.74を達成しました。
RFモデルはピラディオミクスの特徴のみを用いたモデルに対して顕著なロバスト性を示した(PhilipsのAUC 0.78)。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: The reproducibility of machine-learning models in prostate cancer detection across different MRI vendors remains a significant challenge. Methods: This study investigates Support Vector Machines (SVM) and Random Forest (RF) models trained on radiomic features extracted from T2-weighted MRI images using Pyradiomics and MRCradiomics libraries. Feature selection was performed using the maximum relevance minimum redundancy (MRMR) technique. We aimed to enhance clinical decision support through multimodal learning and feature fusion. Results: Our SVM model, utilizing combined features from Pyradiomics and MRCradiomics, achieved an AUC of 0.74 on the Multi-Improd dataset (Siemens scanner) but decreased to 0.60 on the Philips test set. The RF model showed similar trends, with notable robustness for models using Pyradiomics features alone (AUC of 0.78 on Philips). Conclusions: These findings demonstrate the potential of multimodal feature integration to improve the robustness and generalizability of machine-learning models for clinical decision support in prostate cancer detection. This study marks a significant step towards developing reliable AI-driven diagnostic tools that maintain efficacy across various imaging platforms.
- Abstract(参考訳): 背景: 異なるMRIベンダーにわたる前立腺癌検出における機械学習モデルの再現性は、依然として大きな課題である。
方法:本研究では,T2強調MRI画像から放射能特性を学習した支援ベクトルマシン(SVM)とランダムフォレスト(RF)モデルについて,ピラディオミクスおよびMRCラジオミクスライブラリーを用いて検討した。
MRMR法を用いて特徴選択を行った。
マルチモーダル学習と機能融合による臨床診断支援の強化を目指していた。
結果: このSVMモデルはPhilipsテストセットでは0.60に減少したが,Multi-Improdデータセット(シーメンススキャナ)では0.74のAUCを達成した。
RFモデルも同様の傾向を示し、ピラディオミクスの特徴のみを用いたモデル(フィリップスのAUC 0.78)で顕著な堅牢性を示した。
結論: 本研究は, 前立腺癌検出における臨床診断支援のための機械学習モデルの堅牢性と一般化性を向上させるために, マルチモーダル機能統合の可能性を示すものである。
この研究は、様々な画像プラットフォームで有効性を維持する信頼性の高いAI駆動診断ツールを開発するための重要なステップである。
関連論文リスト
- Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling [4.1032659987778315]
放射線的特徴セットの高次元性、放射線的特徴タイプの変動性、そして潜在的に高い計算要求は、全て、与えられた臨床問題に対する最小の予測的特徴セットを特定する効果的な方法の必要性を浮き彫りにしている。
我々は,最小限の放射線学的特徴を識別し,説明するための方法論とツールを開発する。
論文 参考訳(メタデータ) (2024-07-05T23:14:46Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - A Bi-Pyramid Multimodal Fusion Method for the Diagnosis of Bipolar
Disorders [11.622160966334745]
我々はMRIとfMRIの両方のデータを用いて、双極性障害のマルチモーダル診断モデルを提案する。
提案手法は,OpenfMRIデータセットの精度を0.657から0.732に向上させる。
論文 参考訳(メタデータ) (2024-01-15T10:11:19Z) - CXR-LLAVA: a multimodal large language model for interpreting chest
X-ray images [3.0757789554622597]
本研究の目的は,胸部X線画像(CXR)を解釈するためのオープンソースのマルチモーダル大言語モデル(CXR-LLAVA)を開発することである。
トレーニングでは,592,580個のCXRを収集し,そのうち374,881個のX線写真異常のラベルが得られた。
主な病理所見に対する診断成績と,ヒト放射線技師による放射線学的報告の受容性について検討した。
論文 参考訳(メタデータ) (2023-10-22T06:22:37Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - Tensor Radiomics: Paradigm for Systematic Incorporation of
Multi-Flavoured Radiomics Features [0.3569980414613667]
放射能シグネチャの構築を最適化するために,複数のパラメータの組み合わせで計算した特徴のフレーバーを用いた放射能(TR)を提案する。
PET/CT,MRI,CTイメージング機械学習,深層学習ソリューションに適用したTRの例を示す。
以上の結果から,提案するTRパラダイムは,様々な医用画像タスクの性能向上に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2022-03-12T02:20:54Z) - Generative Models Improve Radiomics Performance in Different Tasks and
Different Datasets: An Experimental Study [3.040206021972938]
ラジオミクス(Radiomics)は、医用画像からの高スループット特徴抽出に焦点を当てた研究分野である。
生成モデルは、異なるタスクにおける低線量CTベースの放射能の性能を改善することができる。
論文 参考訳(メタデータ) (2021-09-06T06:01:21Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。