論文の概要: Analyzing Speech Unit Selection for Textless Speech-to-Speech Translation
- arxiv url: http://arxiv.org/abs/2407.18332v1
- Date: Mon, 8 Jul 2024 08:53:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:25:56.741434
- Title: Analyzing Speech Unit Selection for Textless Speech-to-Speech Translation
- Title(参考訳): テキスト音声合成のための音声単位選択の解析
- Authors: Jarod Duret, Yannick Estève, Titouan Parcollet,
- Abstract要約: 本研究は、下流タスクの研究を通して選択プロセスについて考察する。
再生性能のよいユニットは、翻訳効率を高めるユニットと必ずしも相関しない。
- 参考スコア(独自算出の注目度): 23.757896930482342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in textless speech-to-speech translation systems have been driven by the adoption of self-supervised learning techniques. Although most state-of-the-art systems adopt a similar architecture to transform source language speech into sequences of discrete representations in the target language, the criteria for selecting these target speech units remains an open question. This work explores the selection process through a study of downstream tasks such as automatic speech recognition, speech synthesis, speaker recognition, and emotion recognition. Interestingly, our findings reveal a discrepancy in the optimization of discrete speech units: units that perform well in resynthesis performance do not necessarily correlate with those that enhance translation efficacy. This discrepancy underscores the nuanced complexity of target feature selection and its impact on the overall performance of speech-to-speech translation systems.
- Abstract(参考訳): テキストなし音声音声翻訳システムの最近の進歩は、自己教師あり学習技術の導入によって進められている。
多くの最先端システムは、ソース言語音声を対象言語内の離散表現列に変換するのに類似したアーキテクチャを採用しているが、これらのターゲット音声単位を選択する基準は未解決のままである。
本研究は、自動音声認識、音声合成、話者認識、感情認識などの下流タスクの研究を通じて、選択プロセスについて検討する。
この結果から, 合成性能が良好である単位は, 翻訳効率が向上している単位と必ずしも相関しないことが明らかとなった。
この不一致は、ターゲット特徴選択の複雑さと、音声音声翻訳システム全体の性能に与える影響を浮き彫りにする。
関連論文リスト
- TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
カスケード方式で多様なデータセットを活用する新しいモデルフレームワークTransVIPを提案する。
本稿では、話者の音声特性と、翻訳過程における音源音声からの等時性を維持するために、2つの分離エンコーダを提案する。
フランス語と英語のペアに関する実験により、我々のモデルは、現在最先端の音声音声翻訳モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-28T04:11:37Z) - Transfer the linguistic representations from TTS to accent conversion
with non-parallel data [7.376032484438044]
アクセント変換は、話者のアイデンティティを保ちながら、ソース音声のアクセントをターゲットアクセントに変換することを目的としている。
本稿ではアクセントに依存しない言語表現を学習するアクセント変換のための新しい非自己回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-07T16:39:34Z) - Enhancing expressivity transfer in textless speech-to-speech translation [0.0]
既存の最先端システムは、様々な言語で正確に表現力の取得と転送に関して不足している。
本研究では,個別音声単位レベルで動作し,多言語感情の埋め込みを利用する新しい手法を提案する。
対象言語における音声単位のピッチと持続時間を効果的に予測するために,これらの埋め込みがどのように使用できるかを示す。
論文 参考訳(メタデータ) (2023-10-11T08:07:22Z) - SpeechFormer++: A Hierarchical Efficient Framework for Paralinguistic
Speech Processing [17.128885611538486]
パラ言語音声処理は、感情分析や神経認知障害分析などの多くの問題に対処する上で重要である。
音声の特徴を考察し、パラ言語音声処理のための一般的な構造ベースフレームワークであるSpeechFormer++を提案する。
SpeechFormer++は、音声感情認識(IEMOCAP & MELD)、うつ病分類(DAIC-WOZ)、アルツハイマー病検出(Pitt)タスクに基づいて評価される。
論文 参考訳(メタデータ) (2023-02-27T11:48:54Z) - A unified one-shot prosody and speaker conversion system with
self-supervised discrete speech units [94.64927912924087]
既存のシステムは韻律と言語内容の相関を無視し、変換された音声の自然度を低下させる。
自己教師付き離散音声単位を言語表現として活用するカスケードモジュラーシステムを提案する。
実験により,本システムは,自然性,知性,話者伝達性,韻律伝達性において,従来の手法よりも優れていたことがわかった。
論文 参考訳(メタデータ) (2022-11-12T00:54:09Z) - SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data [100.46303484627045]
本稿では,事前定義した統一表現と音声とテキストの事前学習を協調させるクロスモーダル音声言語モデル(SpeechLM)を提案する。
具体的には、音声とテキストのモダリティをブリッジするために、2つの別の離散トークン化器を導入する。
音声認識, 音声翻訳, ユニバーサル表現評価フレームワーク SUPERB など, 様々な音声言語処理タスクにおける音声LM の評価を行った。
論文 参考訳(メタデータ) (2022-09-30T09:12:10Z) - Textless Speech Emotion Conversion using Decomposed and Discrete
Representations [49.55101900501656]
我々は、音声を、コンテンツ単位、F0、話者、感情からなる離散的、非絡み合いの学習表現に分解する。
まず、内容単位を対象の感情に翻訳し、その単位に基づいて韻律的特徴を予測することによって、音声内容を変更する。
最後に、予測された表現をニューラルボコーダに入力して音声波形を生成する。
論文 参考訳(メタデータ) (2021-11-14T18:16:42Z) - Assessing Evaluation Metrics for Speech-to-Speech Translation [9.670709690031885]
音声から音声への翻訳は機械翻訳と音声合成を組み合わせたものである。
音声から音声への翻訳を自動的に評価する方法は、これまで検討されていないオープンな質問である。
論文 参考訳(メタデータ) (2021-10-26T17:35:20Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
ワンショット音声変換は、音声表現のアンタングルメントによって効果的に実現できる。
コンテンツエンコーディングにはベクトル量子化(VQ)を使用し、トレーニング中に相互情報(MI)を相関指標として導入する。
実験結果は,提案手法が効果的に非絡み合った音声表現を学習する際の優位性を反映している。
論文 参考訳(メタデータ) (2021-06-18T13:50:38Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
エンド・ツー・エンドの音声翻訳は、ある言語における音声を、エンド・ツー・エンドの方法で他の言語におけるテキストに変換することを目的としている。
既存のほとんどの手法では、音響表現と意味情報を同時に学習するために、単一のエンコーダを持つエンコーダ・デコーダ構造を用いる。
本稿では,音声とテキスト間のモダリティギャップを埋めることで,エンドツーエンドのモデル性能を向上させることを目的とした音声翻訳モデルのための音声テキスト適応手法を提案する。
論文 参考訳(メタデータ) (2020-10-28T12:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。