Denoising Lévy Probabilistic Models
- URL: http://arxiv.org/abs/2407.18609v2
- Date: Fri, 11 Oct 2024 23:43:41 GMT
- Title: Denoising Lévy Probabilistic Models
- Authors: Dario Shariatian, Umut Simsekli, Alain Durmus,
- Abstract summary: We create the denoising L'evy probabilistic model (DLPM) with $alpha$-stable noise.
It achieves better coverage of data distribution tail, improved generation of unbalanced datasets, and faster times with fewer backward steps.
- Score: 28.879024667933194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Investigating noise distribution beyond Gaussian in diffusion generative models is an open problem. The Gaussian case has seen success experimentally and theoretically, fitting a unified SDE framework for score-based and denoising formulations. Recent studies suggest heavy-tailed noise distributions can address mode collapse and manage datasets with class imbalance, heavy tails, or outliers. Yoon et al. (NeurIPS 2023) introduced the L\'evy-Ito model (LIM), extending the SDE framework to heavy-tailed SDEs with $\alpha$-stable noise. Despite its theoretical elegance and performance gains, LIM's complex mathematics may limit its accessibility and broader adoption. This study takes a simpler approach by extending the denoising diffusion probabilistic model (DDPM) with $\alpha$-stable noise, creating the denoising L\'evy probabilistic model (DLPM). Using elementary proof techniques, we show DLPM reduces to running vanilla DDPM with minimal changes, allowing the use of existing implementations with minimal changes. DLPM and LIM have different training algorithms and, unlike the Gaussian case, they admit different backward processes and sampling algorithms. Our experiments demonstrate that DLPM achieves better coverage of data distribution tail, improved generation of unbalanced datasets, and faster computation times with fewer backward steps.
Related papers
- Robust training of implicit generative models for multivariate and heavy-tailed distributions with an invariant statistical loss [0.4249842620609682]
We build on the textitinvariant statistical loss (ISL) method introduced in citede2024training.
We extend it to handle heavy-tailed and multivariate data distributions.
We assess its performance in generative generative modeling and explore its potential as a pretraining technique for generative adversarial networks (GANs)
arXiv Detail & Related papers (2024-10-29T10:27:50Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
We present a differential equation that transforms a complex data distribution to a known prior distribution by injecting noise.
A corresponding reverse-time SDE transforms the prior distribution back into the data distribution by slowly removing the noise.
By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks.
We demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
arXiv Detail & Related papers (2020-11-26T19:39:10Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
Low-rank Multi-view Subspace Learning has shown great potential in cross-view classification in recent years.
Existing LMvSL based methods are incapable of well handling view discrepancy and discriminancy simultaneously.
We propose Structured Low-rank Matrix Recovery (SLMR), a unique method of effectively removing view discrepancy and improving discriminancy.
arXiv Detail & Related papers (2020-03-22T03:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.