論文の概要: Predicting 3D Rigid Body Dynamics with Deep Residual Network
- arxiv url: http://arxiv.org/abs/2407.18798v1
- Date: Tue, 9 Jul 2024 23:40:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:25:56.725390
- Title: Predicting 3D Rigid Body Dynamics with Deep Residual Network
- Title(参考訳): 深部残留ネットワークを用いた3次元剛体力学の予測
- Authors: Abiodun Finbarrs Oketunji,
- Abstract要約: 本稿では,C++で実装された3次元物理シミュレータとPyTorchを用いたディープラーニングモデルを組み合わせたフレームワークを提案する。
シミュレータは、線形および角運動、弾性衝突、流体摩擦、重力効果、減衰を含むトレーニングデータを生成する。
我々は,1万のシミュレーションシナリオのデータセットを用いて,ネットワークの性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the application of deep residual networks for predicting the dynamics of interacting three-dimensional rigid bodies. We present a framework combining a 3D physics simulator implemented in C++ with a deep learning model constructed using PyTorch. The simulator generates training data encompassing linear and angular motion, elastic collisions, fluid friction, gravitational effects, and damping. Our deep residual network, consisting of an input layer, multiple residual blocks, and an output layer, is designed to handle the complexities of 3D dynamics. We evaluate the network's performance using a datasetof 10,000 simulated scenarios, each involving 3-5 interacting rigid bodies. The model achieves a mean squared error of 0.015 for position predictions and 0.022 for orientation predictions, representing a 25% improvement over baseline methods. Our results demonstrate the network's ability to capture intricate physical interactions, with particular success in predicting elastic collisions and rotational dynamics. This work significantly contributes to physics-informed machine learning by showcasing the immense potential of deep residual networks in modeling complex 3D physical systems. We discuss our approach's limitations and propose future directions for improving generalization to more diverse object shapes and materials.
- Abstract(参考訳): 本研究では,3次元剛体相互作用のダイナミクスを予測するためのディープ残差ネットワークの適用について検討した。
本稿では,C++で実装された3次元物理シミュレータとPyTorchを用いたディープラーニングモデルを組み合わせたフレームワークを提案する。
シミュレータは、線形および角運動、弾性衝突、流体摩擦、重力効果、減衰を含むトレーニングデータを生成する。
入力層,複数の残差ブロック,出力層から構成される深部残差ネットワークは,3次元力学の複雑さを扱うように設計されている。
我々は,1万のシミュレーションシナリオのデータセットを用いて,ネットワークの性能を評価する。
このモデルは位置予測の平均2乗誤差が0.015、方向予測が0.022であり、ベースライン法よりも25%改善されている。
以上の結果から,ネットワークの複雑な物理的相互作用を捉える能力,特に弾性衝突や回転力学の予測に成功していることを示す。
この研究は、複雑な3次元物理システムのモデリングにおいて、深い残留ネットワークの潜在可能性を示すことによって、物理学インフォームド・機械学習に大きく貢献する。
提案手法の限界について議論し,より多様な物体形状や材料への一般化に向けた今後の方向性を提案する。
関連論文リスト
- Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting [22.40115216094332]
Sim Anythingは、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える物理ベースのアプローチである。
人間の視覚的推論に触発されて,MLLMに基づく物理特性知覚を提案する。
また、物理幾何学的適応サンプリングを用いて粒子をサンプリングして、オープンワールドシーンでオブジェクトをシミュレートする。
論文 参考訳(メタデータ) (2024-11-19T12:52:21Z) - Object Dynamics Modeling with Hierarchical Point Cloud-based Representations [1.3934784414106087]
本稿では,連続点畳み込みに基づく新しいU-netアーキテクチャを提案する。
ダウンサンプリングされた点雲のボトルネック層は、より優れた長距離相互作用モデリングをもたらす。
我々の手法は、特に正確な重力や衝突の推論を必要とするシナリオにおいて、最先端の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-09T06:10:15Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - PerSival: Neural-network-based visualisation for pervasive
continuum-mechanical simulations in musculoskeletal biomechanics [1.4272256806865107]
本稿では,3次元ヒト上肢骨格系モデルの広汎化のためのニューラルネットワークアーキテクチャを提案する。
我々はスパルスグリッドサロゲートを用いて,同じ筋肉をリアルタイムに可視化する深層学習モデルのトレーニングを行う。
論文 参考訳(メタデータ) (2023-12-07T00:07:35Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
我々は、前方物理シミュレーションと後方勾配近似とニューラルネットワークを組み合わせた新しいディープラーニングパイプラインであるDeepSimHOを紹介する。
提案手法は, 評価の安定性を著しく向上し, テスト時間最適化よりも優れた効率性を実現する。
論文 参考訳(メタデータ) (2023-10-11T05:34:36Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - 3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive
Physics under Challenging Scenes [68.66237114509264]
複雑なシーンと流体の映像から3次元的な視覚的直感的な物理モデルを学習できるフレームワークを提案する。
本モデルでは,生画像から学習し,明示的な3次元表現空間を用いないモデルよりもはるかに優れた将来予測が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-22T19:28:49Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
流体力学を推定することは、解決するのが非常に難しい。
問題に対する新しいモデル,メソッド,ベンチマークを導入する。
我々の変換器は、既存の合成データセットと実際のデータセットの両方において、最先端のパフォーマンスより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-16T12:59:08Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。