論文の概要: Learning Chaotic Systems and Long-Term Predictions with Neural Jump ODEs
- arxiv url: http://arxiv.org/abs/2407.18808v1
- Date: Fri, 26 Jul 2024 15:18:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 12:59:26.378717
- Title: Learning Chaotic Systems and Long-Term Predictions with Neural Jump ODEs
- Title(参考訳): ニューラルネットワークによるカオス学習システムと長期予測
- Authors: Florian Krach, Josef Teichmann,
- Abstract要約: パス依存型ニューラルジャンプODE (PDNJ-ODE) は、不規則な(時間内に)および潜在的に不完全(座標に関して)な、一般的なプロセスのオンライン予測モデルである。
本研究では,2つの新しいアイデアによってモデルを強化し,互いに独立してモデル設定の性能を向上させる。
同じ拡張を使用して、PDNJ-ODEが標準モデルが失敗する一般的なデータセットの長期的な予測を確実に学習することができる。
- 参考スコア(独自算出の注目度): 4.204990010424083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Path-dependent Neural Jump ODE (PD-NJ-ODE) is a model for online prediction of generic (possibly non-Markovian) stochastic processes with irregular (in time) and potentially incomplete (with respect to coordinates) observations. It is a model for which convergence to the $L^2$-optimal predictor, which is given by the conditional expectation, is established theoretically. Thereby, the training of the model is solely based on a dataset of realizations of the underlying stochastic process, without the need of knowledge of the law of the process. In the case where the underlying process is deterministic, the conditional expectation coincides with the process itself. Therefore, this framework can equivalently be used to learn the dynamics of ODE or PDE systems solely from realizations of the dynamical system with different initial conditions. We showcase the potential of our method by applying it to the chaotic system of a double pendulum. When training the standard PD-NJ-ODE method, we see that the prediction starts to diverge from the true path after about half of the evaluation time. In this work we enhance the model with two novel ideas, which independently of each other improve the performance of our modelling setup. The resulting dynamics match the true dynamics of the chaotic system very closely. The same enhancements can be used to provably enable the PD-NJ-ODE to learn long-term predictions for general stochastic datasets, where the standard model fails. This is verified in several experiments.
- Abstract(参考訳): Path-dependent Neural Jump ODE (PD-NJ-ODE) は、非マルコフ確率過程のオンライン予測モデルである。
条件付き予測によって与えられる$L^2$-optimal predictorへの収束が理論的に確立されるモデルである。
これにより、モデルのトレーニングは、プロセスの法則に関する知識を必要とせず、基礎となる確率過程の実現のデータセットのみに基づいて行われる。
基礎となるプロセスが決定論的である場合、条件付き期待はプロセス自体と一致する。
したがって、このフレームワークは、初期条件の異なる力学系の実現のみからODEやPDEシステムの力学を学ぶのに等価である。
二重振り子のカオスシステムに応用することで,本手法の可能性を示す。
標準PD-NJ-ODE法を訓練すると,評価時間の約半分後に,予測が真の経路から分岐し始めることが分かる。
本研究では,2つの新しいアイデアによってモデルを強化し,互いに独立してモデル設定の性能を向上させる。
結果として生じる力学はカオスシステムの真の力学と非常によく一致する。
同じ拡張は、PD-NJ-ODEが標準モデルが失敗する一般的な確率的データセットの長期予測を確実に学習できるようにするために使用することができる。
これはいくつかの実験で検証されている。
関連論文リスト
- Foundational Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
本稿では確率的潜在変数モデルで推論と学習が可能なシステムについて述べる。
ランゲヴィン力学を用いて潜伏変数を推論する連続時間方程式を導出することにより、スパース符号化モデルのこのアイデアを実証する。
ランゲヴィン力学は、L1ノルムが小さいのに対して、潜伏変数をゼロにすることを推奨する'L0スパース'系において、後続分布からサンプリングする効率的な手順をもたらすことを示す。
論文 参考訳(メタデータ) (2022-04-23T23:16:47Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Physics-integrated hybrid framework for model form error identification
in nonlinear dynamical systems [0.0]
実生活の非線形系では、正確な非線形性の形式はよく知られておらず、既知の支配方程式は特定の仮定や近似に基づいていることが多い。
モデル形状の誤差を識別するだけでなく、既知のが近似的な支配方程式の予測能力を向上させるためにも活用する、新しいグレーボックスモデリング手法を提案する。
論文 参考訳(メタデータ) (2021-09-01T16:29:21Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Bayesian Neural Ordinary Differential Equations [0.9422623204346027]
Neural ODEs と Bayesian 推論フレームワークの統合が成功したことを実証します。
10,000枚の画像のテストアンサンブルで、後部のサンプル精度を98.5%達成します。
これにより、不確実性の確率的推定のための科学的機械学習ツールが提供される。
論文 参考訳(メタデータ) (2020-12-14T04:05:26Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Neural Jump Ordinary Differential Equations: Consistent Continuous-Time
Prediction and Filtering [6.445605125467574]
我々は、連続的に学習するデータ駆動型アプローチを提供するNeural Jump ODE(NJ-ODE)を紹介する。
我々のモデルは、$L2$-Optimalオンライン予測に収束することを示す。
我々は,より複雑な学習タスクにおいて,モデルがベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2020-06-08T16:34:51Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。