論文の概要: Physics-integrated hybrid framework for model form error identification
in nonlinear dynamical systems
- arxiv url: http://arxiv.org/abs/2109.00538v1
- Date: Wed, 1 Sep 2021 16:29:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 14:01:16.593383
- Title: Physics-integrated hybrid framework for model form error identification
in nonlinear dynamical systems
- Title(参考訳): 非線形力学系におけるモデル型誤り同定のための物理統合ハイブリッドフレームワーク
- Authors: Shailesh Garg and Souvik Chakraborty and Budhaditya Hazra
- Abstract要約: 実生活の非線形系では、正確な非線形性の形式はよく知られておらず、既知の支配方程式は特定の仮定や近似に基づいていることが多い。
モデル形状の誤差を識別するだけでなく、既知のが近似的な支配方程式の予測能力を向上させるためにも活用する、新しいグレーボックスモデリング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: For real-life nonlinear systems, the exact form of nonlinearity is often not
known and the known governing equations are often based on certain assumptions
and approximations. Such representation introduced model-form error into the
system. In this paper, we propose a novel gray-box modeling approach that not
only identifies the model-form error but also utilizes it to improve the
predictive capability of the known but approximate governing equation. The
primary idea is to treat the unknown model-form error as a residual force and
estimate it using duel Bayesian filter based joint input-state estimation
algorithms. For improving the predictive capability of the underlying physics,
we first use machine learning algorithm to learn a mapping between the
estimated state and the input (model-form error) and then introduce it into the
governing equation as an additional term. This helps in improving the
predictive capability of the governing physics and allows the model to
generalize to unseen environment. Although in theory, any machine learning
algorithm can be used within the proposed framework, we use Gaussian process in
this work. To test the performance of proposed framework, case studies
discussing four different dynamical systems are discussed; results for which
indicate that the framework is applicable to a wide variety of systems and can
produce reliable estimates of original system's states.
- Abstract(参考訳): 実寿命非線形系では、厳密な非線形性はよく知られておらず、既知の支配方程式は特定の仮定と近似に基づいていることが多い。
このような表現はシステムにモデル形式のエラーをもたらした。
本稿では, モデル形式誤差を同定するだけでなく, 既知だが近似的な制御方程式の予測能力を向上させるために, 新たなグレイボックスモデリング手法を提案する。
第一の考え方は、未知のモデル形状誤差を残留力として扱い、デュエルベイズフィルタに基づく結合入力状態推定アルゴリズムを用いて推定することである。
基礎となる物理の予測能力を向上するために、まず機械学習アルゴリズムを用いて、推定状態と入力(モデル形式誤差)の間のマッピングを学習し、その後、追加用語として支配方程式に導入する。
これにより、支配物理学の予測能力が向上し、モデルは目に見えない環境に一般化することができる。
理論的には,提案フレームワーク内では任意の機械学習アルゴリズムが利用できるが,本研究ではガウス過程を用いる。
提案フレームワークの性能をテストするために,4つの異なる力学系を考察するケーススタディが議論されている。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Koopman-based Deep Learning for Nonlinear System Estimation [1.3791394805787949]
複素非線形系の有意な有限次元表現を抽出するために、クープマン作用素理論に基づく新しいデータ駆動線形推定器を提案する。
我々の推定器は推定された非線形系の微分同相変換にも適応しており、再学習せずに最適な状態推定を計算できる。
論文 参考訳(メタデータ) (2024-05-01T16:49:54Z) - LEARNEST: LEARNing Enhanced Model-based State ESTimation for Robots
using Knowledge-based Neural Ordinary Differential Equations [4.3403382998035624]
本研究では、状態推定アルゴリズムで用いられる力学モデルを強化することにより、ロボットシステムの正確な状態推定を行うタスクについて考察する。
動的モデルの強化と推定精度の向上のために,知識ベースニューラル常微分方程式(KNODE)と呼ばれるディープラーニングフレームワークを利用する。
提案する LEARNEST フレームワークでは,データ駆動モデルと KNODE-MHE と KNODE-UKF の2つの新しいモデルベース状態推定アルゴリズムを統合する。
論文 参考訳(メタデータ) (2022-09-16T22:16:40Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
データから動的システムを特定するために,機械的アプローチと機械学習アプローチを混在させる統一フレームワークを提案する。
モデルエラーがメモリレスであり、大きなメモリを持つ問題に対して、連続時間と離散時間の両方で問題を提起した。
ハイブリッド手法は、データ飢餓、モデルの複雑さの要求、全体的な予測性能において、データ駆動アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-14T12:47:48Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。