論文の概要: Awareness and Adoption of AI Technologies in the Libraries of Karnataka
- arxiv url: http://arxiv.org/abs/2407.18933v1
- Date: Wed, 10 Jul 2024 09:33:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:16:12.995369
- Title: Awareness and Adoption of AI Technologies in the Libraries of Karnataka
- Title(参考訳): カルナタカ図書館におけるAI技術の認識と採用
- Authors: Felcy D'Souza,
- Abstract要約: 本研究は,カルナタカの書誌専門家を対象に,AI技術の意識と採用を評価するための調査手法を用いた。
この研究は、性別の要因に基づくAI技術の認識と採用に統計的に有意な違いがあることを明らかにした。
年齢、学歴、専門的経験などの要因に基づくAI技術の認識度と採用度の間には、有意な関係は存在しない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study aims to determine the awareness and adoption of Artificial Intelligence (AI) technologies in the respondent libraries of Karnataka based on demographic variables such as gender, age, academic status, and professional experience. This study employed a survey research method to evaluate the awareness and adoption of AI technologies among the respondent library professionals in Karnataka. The study employed a stratified random sampling method to select a sample of 120 respondents from a diverse population, encompassing library professionals across multiple institution types including engineering colleges, medical colleges, and degree colleges. The Chi-square test was used to analyze the data. The study revealed that there is a statistically significant difference in the awareness and adoption of AI technologies based on the factor of gender. Whereas there no significant relationship exists between the degree of awareness and adoption of AI technologies based on factors such as age, academic ranking, and professional experience. AI-powered plagiarism detection, grammar checking, and ChatGPT are the most popularly employed AI technologies among the respondents. The respondents are of the perception that AI will support Librarians and not replace them.
- Abstract(参考訳): 本研究では, 性別, 年齢, 学歴, 職業経験などの人口統計学的変数に基づいて, カルナタカの応答型図書館における人工知能(AI)技術の認識と導入について検討する。
本研究は,カルナタカの書誌専門家を対象に,AI技術の意識と採用を評価するための調査手法を用いた。
本研究は, 工学系大学, 医学系大学, 学位大学など, 様々な機関にまたがる図書館の専門家を対象とする, 多様な集団から120名のサンプルを抽出するために, 階層化されたランダムサンプリング法を用いて行った。
Chi-squareテストはデータ分析に使用された。
この研究は、性別の要因に基づくAI技術の認識と採用に統計的に有意な違いがあることを明らかにした。
一方、AI技術の認知度と採用度の間には、年齢、学術的ランク付け、専門的経験などの要因に基づく有意な関係は存在しない。
AIを利用したプラジャリズム検出、文法チェック、ChatGPTは、回答者の中で最も広く使われているAI技術である。
回答者は、AIがライブラリーをサポートし、置き換えない、という認識を持っている。
関連論文リスト
- AI for social science and social science of AI: A Survey [47.5235291525383]
人工知能の最近の進歩は、人工知能の可能性を再考するきっかけとなった。
AIの人間的能力の増大は、社会科学研究にも注目されている。
論文 参考訳(メタデータ) (2024-01-22T10:57:09Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
我々は、人間がAIモデルでは利用できない知識に対してAI予測をシチュレートする能力を集中させる「クリティカルユース」と呼ばれるプロセス指向の適切な依存の概念を紹介します。
我々は、児童虐待スクリーニングという複雑な社会的意思決定環境でランダム化オンライン実験を行う。
参加者にAIによる意思決定を実践する、迅速で低い機会を提供することによって、初心者は、経験豊富な労働者に類似したAIとの不一致のパターンを示すようになった。
論文 参考訳(メタデータ) (2023-08-30T01:54:31Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - The ethical ambiguity of AI data enrichment: Measuring gaps in research
ethics norms and practices [2.28438857884398]
この研究は、AI研究とデータ豊か化のために、同等な研究倫理要件と規範がどのように開発されたか、そしてどの程度まで調査する。
主要なAI会場は、人間のデータ収集のためのプロトコルを確立し始めているが、これらは矛盾なく著者が追従している。
論文 参考訳(メタデータ) (2023-06-01T16:12:55Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Application of Artificial Intelligence and Machine Learning in
Libraries: A Systematic Review [0.0]
本研究の目的は,図書館における人工知能と機械学習の適用を探求する実証研究の合成を提供することである。
データはWeb of Science, Scopus, LISA, LISTAデータベースから収集された。
LIS領域に関連するAIとML研究の現在の状況は、主に理論的な研究に焦点が当てられていることを示している。
論文 参考訳(メタデータ) (2021-12-06T07:33:09Z) - AI Explainability 360: Impact and Design [120.95633114160688]
2019年、私たちはAI Explainability 360(Arya et al. 2020)を開発しました。
本稿では,いくつかのケーススタディ,統計,コミュニティフィードバックを用いて,ツールキットが与える影響について検討する。
また,ツールキットのフレキシブルな設計,使用例,利用者が利用可能な教育資料や資料についても述べる。
論文 参考訳(メタデータ) (2021-09-24T19:17:09Z) - A narrowing of AI research? [0.0]
学術と民間におけるAI研究のテーマ的多様性の進化について研究する。
我々は、AI研究における民間企業の影響力を、彼らが受け取った引用と他の機関とのコラボレーションを通じて測定する。
論文 参考訳(メタデータ) (2020-09-22T08:23:56Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。