Shaping Integrity: Why Generative Artificial Intelligence Does Not Have to Undermine Education
- URL: http://arxiv.org/abs/2407.19088v2
- Date: Thu, 10 Oct 2024 23:49:22 GMT
- Title: Shaping Integrity: Why Generative Artificial Intelligence Does Not Have to Undermine Education
- Authors: Myles Joshua Toledo Tan, Nicholle Mae Amor Tan Maravilla,
- Abstract summary: The paper argues that generative artificial intelligence (GAI) can enhance digital literacy, encourage genuine knowledge construction, and uphold ethical standards in education.
This research highlights the potential of GAI to create enriching, personalized learning environments that prepare students to navigate the complexities of the modern world ethically and effectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper examines the role of generative artificial intelligence (GAI) in promoting academic integrity within educational settings. It explores how AI can be ethically integrated into classrooms to enhance learning experiences, foster intrinsic motivation, and support voluntary behavior change among students. By analyzing established ethical frameworks and educational theories such as deontological ethics, consequentialism, constructivist learning, and Self-Determination Theory (SDT), the paper argues that GAI, when used responsibly, can enhance digital literacy, encourage genuine knowledge construction, and uphold ethical standards in education. This research highlights the potential of GAI to create enriching, personalized learning environments that prepare students to navigate the complexities of the modern world ethically and effectively.
Related papers
- A Conceptual Exploration of Generative AI-Induced Cognitive Dissonance and its Emergence in University-Level Academic Writing [0.0]
This work explores how Generative Artificial Intelligence (GenAI) serves as both a trigger and amplifier of cognitive dissonance (CD)
We introduce a hypothetical construct of GenAI-induced CD, illustrating the tension between AI-driven efficiency and the principles of originality, effort, and intellectual ownership.
We discuss strategies to mitigate this dissonance, including reflective pedagogy, AI literacy programs, transparency in GenAI use, and discipline-specific task redesigns.
arXiv Detail & Related papers (2025-02-08T21:31:04Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Generative AI Literacy: Twelve Defining Competencies [48.90506360377104]
This paper introduces a competency-based model for generative artificial intelligence (AI) literacy covering essential skills and knowledge areas necessary to interact with generative AI.
The competencies range from foundational AI literacy to prompt engineering and programming skills, including ethical and legal considerations.
These twelve competencies offer a framework for individuals, policymakers, government officials, and educators looking to navigate and take advantage of the potential of generative AI responsibly.
arXiv Detail & Related papers (2024-11-29T14:55:15Z) - Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
Generative AI enables personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways.
Report explores key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems.
Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education.
arXiv Detail & Related papers (2024-10-14T16:01:01Z) - Artificial Intelligence in Education: Ethical Considerations and Insights from Ancient Greek Philosophy [0.3108011671896571]
The paper argues that while AI presents significant challenges, a balanced approach informed by classical philosophical thought can lead to an ethically sound transformation of education.
It emphasizes the evolving role of teachers as facilitators and the importance of fostering student initiative in AI-rich environments.
arXiv Detail & Related papers (2024-09-04T08:59:38Z) - Comprehensive AI Assessment Framework: Enhancing Educational Evaluation with Ethical AI Integration [0.0]
This paper presents the Comprehensive AI Assessment Framework (CAIAF), an evolved version of the AI Assessment Scale (AIAS) by Perkins, Furze, Roe, and MacVaugh.
The CAIAF incorporates stringent ethical guidelines, with clear distinctions based on educational levels, and advanced AI capabilities.
The framework will ensure better learning outcomes, uphold academic integrity, and promote responsible use of AI.
arXiv Detail & Related papers (2024-06-07T07:18:42Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Generative AI and Its Educational Implications [0.0]
We discuss the implications of generative AI on education across four critical sections.
We propose ways in which generative AI can transform the educational landscape.
Acknowledging the societal impact, we emphasize the need for updating curricula.
arXiv Detail & Related papers (2023-12-26T21:29:31Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models.
We introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method.
arXiv Detail & Related papers (2023-10-26T16:45:40Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.