論文の概要: AI Companions Reduce Loneliness
- arxiv url: http://arxiv.org/abs/2407.19096v1
- Date: Tue, 9 Jul 2024 15:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:06:22.363514
- Title: AI Companions Reduce Loneliness
- Title(参考訳): AIコンパニオンによる並列性低減
- Authors: Julian De Freitas, Ahmet K Uguralp, Zeliha O Uguralp, Puntoni Stefano,
- Abstract要約: 我々は、消費者に合成インタラクションパートナーを提供するように設計されたAIコンパニオンアプリケーションに焦点を当てる。
調査1と2では、消費者が孤独を和らげるためにAIコンパニオンを使用しているという示唆的な証拠が発見されている。
研究3では、AIコンパニオンが、他人と対話するだけで孤独を和らげることに成功していることがわかった。
研究4では、縦長の設計を使用して、AIが1週間にわたって一貫して孤独を和らげていることに気付きました。
- 参考スコア(独自算出の注目度): 0.5699788926464752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chatbots are now able to engage in sophisticated conversations with consumers in the domain of relationships, providing a potential coping solution to widescale societal loneliness. Behavioral research provides little insight into whether these applications are effective at alleviating loneliness. We address this question by focusing on AI companions applications designed to provide consumers with synthetic interaction partners. Studies 1 and 2 find suggestive evidence that consumers use AI companions to alleviate loneliness, by employing a novel methodology for fine tuning large language models to detect loneliness in conversations and reviews. Study 3 finds that AI companions successfully alleviate loneliness on par only with interacting with another person, and more than other activities such watching YouTube videos. Moreover, consumers underestimate the degree to which AI companions improve their loneliness. Study 4 uses a longitudinal design and finds that an AI companion consistently reduces loneliness over the course of a week. Study 5 provides evidence that both the chatbots' performance and, especially, whether it makes users feel heard, explain reductions in loneliness. Study 6 provides an additional robustness check for the loneliness alleviating benefits of AI companions.
- Abstract(参考訳): チャットボットは、関係分野における消費者との高度な会話を行えるようになり、広範囲な社会的孤独に対する潜在的な対処ソリューションを提供する。
振舞いの研究は、これらのアプリケーションが孤独を和らげるのに効果的かどうかについての洞察をほとんど与えない。
我々は、消費者に合成インタラクションパートナーを提供するように設計されたAIコンパニオンアプリケーションに焦点を当て、この問題に対処する。
研究1と2は、消費者がAIコンパニオンを使用して孤独を和らげているという示唆的な証拠を見つける。
研究3では、AIコンパニオンが、他の人と対話するだけでなく、YouTubeビデオを見るといった他の活動と同等の孤独を和らげることに成功していることがわかった。
さらに、消費者はAIコンパニオンが孤独性を改善する程度を過小評価する。
研究4では、縦長の設計を使用して、AIが1週間にわたって一貫して孤独を和らげていることに気付きました。
研究5は、チャットボットのパフォーマンスと、特にユーザーが聞き取りを感じさせるかどうかの両方が、孤独感の低下を説明する証拠を提供する。
研究6は、AIコンパニオンの孤独を緩和するための、さらなる堅牢性チェックを提供する。
関連論文リスト
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Interrogating AI: Characterizing Emergent Playful Interactions with ChatGPT [10.907980864371213]
本研究では,人気のAI技術であるChatGPTのユーザによる遊び的なインタラクションに焦点を当てた。
ユーザ談話の半数以上(54%)が遊び心のあるインタラクションを中心に展開していることがわかった。
これらのインタラクションが、AIのエージェンシーを理解し、人間とAIの関係を形作り、AIシステムを設計するための洞察を提供する上で、どのように役立つかを検討する。
論文 参考訳(メタデータ) (2024-01-16T14:44:13Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Neural Amortized Inference for Nested Multi-agent Reasoning [54.39127942041582]
本研究では,人間のような推論能力と計算限界のギャップを埋める新しい手法を提案する。
提案手法を2つの挑戦的マルチエージェント相互作用領域で評価する。
論文 参考訳(メタデータ) (2023-08-21T22:40:36Z) - Identifying Ethical Issues in AI Partners in Human-AI Co-Creation [0.7614628596146599]
人間-AIのコクリエーションには、人間とAIが協力し、共同で創造的なプロダクトをパートナーとして提供する。
多くの既存のコクリエイティブシステムでは、ユーザーはボタンやスライダーを使用してAIと通信する。
本稿では,AIと人間のコミュニケーションが共同創造システムにおけるユーザ認識とエンゲージメントに与える影響について考察する。
論文 参考訳(メタデータ) (2022-04-15T20:41:54Z) - Human-AI Collaboration Enables More Empathic Conversations in Text-based
Peer-to-Peer Mental Health Support [10.743204843534512]
AI-in-the-loopエージェントであるHayleyを開発した。このエージェントは、サポートを提供する参加者(ピアサポーター)が助けを求める参加者(フォスター支援者)に対して共感的に反応するのを助けるために、ジャスト・イン・タイムフィードバックを提供する。
我々の人間とAIのコラボレーションアプローチは、ピア間での会話の共感を19.60%増加させます。
支援の難しさを自認するピアサポーターのサブサンプルでは,38.88%の共感が増大している。
論文 参考訳(メタデータ) (2022-03-28T23:37:08Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Artificial intelligence in communication impacts language and social
relationships [11.212791488179757]
我々は、最も普及しているAIアプリケーションのうちの1つ、アルゴリズム的な応答提案(smart response)の社会的結果を研究する。
提案手法は, コミュニケーション効率の向上, 肯定的な感情言語の利用, コミュニケーションパートナーによる肯定的な評価を行う。
しかし、AIの否定的含意に関する一般的な仮定と一致し、アルゴリズム的応答を疑う場合、人々はより否定的に評価される。
論文 参考訳(メタデータ) (2021-02-10T22:05:11Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。