論文の概要: Towards Scalable and Stable Parallelization of Nonlinear RNNs
- arxiv url: http://arxiv.org/abs/2407.19115v1
- Date: Fri, 26 Jul 2024 22:38:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 19:40:49.333124
- Title: Towards Scalable and Stable Parallelization of Nonlinear RNNs
- Title(参考訳): 非線形RNNのスケーラブルで安定な並列化に向けて
- Authors: Xavier Gonzalez, Andrew Warrington, Jimmy T. H. Smith, Scott W. Linderman,
- Abstract要約: 本稿では, 非線形RNNの並列化評価を, ニュートン法で解いた固定点問題として取り上げる。
これらの手法は立方体計算の複雑さと数値不安定性を継承する。
準ニュートン近似はフルニュートンに可逆収束し,メモリ使用量が少なく,高速であることを示す。
- 参考スコア(独自算出の注目度): 13.705742451466225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional nonlinear RNNs are not naturally parallelizable across the sequence length, whereas transformers and linear RNNs are. Lim et al. [2024] therefore tackle parallelized evaluation of nonlinear RNNs by posing it as a fixed point problem, solved with Newton's method. By deriving and applying a parallelized form of Newton's method, they achieve huge speedups over sequential evaluation. However, their approach inherits cubic computational complexity and numerical instability. We tackle these weaknesses. To reduce the computational complexity, we apply quasi-Newton approximations and show they converge comparably to full-Newton, use less memory, and are faster. To stabilize Newton's method, we leverage a connection between Newton's method damped with trust regions and Kalman smoothing. This connection allows us to stabilize Newtons method, per the trust region, while using efficient parallelized Kalman algorithms to retain performance. We compare these methods empirically, and highlight the use cases where each algorithm excels.
- Abstract(参考訳): 従来の非線形RNNはシーケンス長を並列化できないが、変換器と線形RNNは並列化可能である。
したがって、Lim et al [2024] は、ニュートン法で解いた固定点問題として、非線形 RNN の並列化評価に取り組む。
ニュートンの手法の並列化形式を導出し、適用することにより、逐次評価よりも大きなスピードアップを達成する。
しかし、それらの手法は立方体計算の複雑さと数値不安定性を継承する。
これらの弱点に対処する。
計算複雑性を低減するため、準ニュートン近似を適用し、それらをフルニュートンに整合的に収束させ、メモリを少なくし、より高速であることを示す。
ニュートン法を安定化させるために、信頼領域に減衰したニュートン法とカルマン平滑化の接続を利用する。
この接続により、信頼領域ごとにニュートン法を安定化し、効率的な並列化カルマンアルゴリズムを用いて性能を維持することができる。
これらの手法を実証的に比較し,各アルゴリズムが優れているユースケースを強調した。
関連論文リスト
- Symmetric Rank-One Quasi-Newton Methods for Deep Learning Using Cubic Regularization [0.5120567378386615]
アダムやアダグラッドのような一階降下や他の一階変種は、ディープラーニングの分野で一般的に使われている。
しかし、これらの手法は曲率情報を活用しない。
準ニュートン法は、以前計算された低ヘッセン近似を再利用する。
論文 参考訳(メタデータ) (2025-02-17T20:20:11Z) - Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
各成分関数が強く凸であり、リプシッツ連続勾配とヘシアンを持つ有限和最適化問題を考える。
最近提案されたインクリメンタル準ニュートン法は、BFGSの更新に基づいて、局所的な超線形収束率を達成する。
本稿では、対称ランク1更新をインクリメンタルフレームワークに組み込むことにより、より効率的な準ニュートン法を提案する。
論文 参考訳(メタデータ) (2024-02-04T05:54:51Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Smoothing ADMM for Sparse-Penalized Quantile Regression with Non-Convex
Penalties [8.294148737585543]
本稿では,非二次絶対および非平滑収束ペナルティの存在下での凹凸および切断された量子レグレッションについて検討する。
本稿では,スパース回帰に特化してSIADと呼ばれるペナルティ乗算器が増加する新しいループADMアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-04T21:48:51Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Contracting Neural-Newton Solver [0.0]
我々は、CoNNS(Contracting Neural-Newton Solver)と呼ばれる繰り返しNNシミュレーションツールを開発した。
本稿では、暗黙のルンゲ・クッタ積分器の中心にあるニュートン解法を、この固定点を求める反復写像としてモデル化する。
NNを通した連続したパスが、一意の定点に収束することが保証されていることを証明します。
論文 参考訳(メタデータ) (2021-06-04T15:14:12Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
本研究では,探索学習と表現学習の両方が重要な役割を果たす課題を解決するために,ニューラルネットワークの帯域について検討する。
破滅的な忘れ込みに対して耐性があり、完全にオンラインである可能性の高いマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T14:19:07Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
Problems [26.24895953952318]
我々は,非ガンスミニマックス問題のクラスを解くアルゴリズムを開発した。
また、単一または2つのミニバッチ誘導体でも機能する。
論文 参考訳(メタデータ) (2020-06-27T03:05:18Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
ニューラルネットワークの評価や自己回帰モデルからのサンプリングなどのフィードフォワード計算は、機械学習においてユビキタスである。
本稿では,非線形方程式の解法としてフィードフォワード計算の課題を定式化し,ジャコビ・ガウス・シーデル固定点法とハイブリッド法を用いて解を求める。
提案手法は, 並列化可能な繰り返し回数の削減(あるいは等値化)により, 元のフィードフォワード計算と全く同じ値が与えられることを保証し, 十分な並列化計算能力を付与する。
論文 参考訳(メタデータ) (2020-02-10T10:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。