論文の概要: A fast neural hybrid Newton solver adapted to implicit methods for nonlinear dynamics
- arxiv url: http://arxiv.org/abs/2407.03945v1
- Date: Thu, 4 Jul 2024 14:02:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:53:13.137383
- Title: A fast neural hybrid Newton solver adapted to implicit methods for nonlinear dynamics
- Title(参考訳): 非線形力学の暗黙的手法に適応した高速ニューラルネットワークハイブリッドニュートンソルバ
- Authors: Tianyu Jin, Georg Maierhofer, Katharina Schratz, Yang Xiang,
- Abstract要約: 本稿では,厳密な時間進化非線形方程式に対する非線形時間ステップシステムのこの解を高速化するための,ニュートン法に基づく新しい演算子学習法を提案する。
ニュートン法における量的改善率を示し、教師なし学習戦略の一般化誤差の上限を解析する。
- 参考スコア(独自算出の注目度): 6.642649934130245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of implicit time-stepping schemes for the numerical approximation of solutions to stiff nonlinear time-evolution equations brings well-known advantages including, typically, better stability behaviour and corresponding support of larger time steps, and better structure preservation properties. However, this comes at the price of having to solve a nonlinear equation at every time step of the numerical scheme. In this work, we propose a novel operator learning based hybrid Newton's method to accelerate this solution of the nonlinear time step system for stiff time-evolution nonlinear equations. We propose a targeted learning strategy which facilitates robust unsupervised learning in an offline phase and provides a highly efficient initialisation for the Newton iteration leading to consistent acceleration of Newton's method. A quantifiable rate of improvement in Newton's method achieved by improved initialisation is provided and we analyse the upper bound of the generalisation error of our unsupervised learning strategy. These theoretical results are supported by extensive numerical results, demonstrating the efficiency of our proposed neural hybrid solver both in one- and two-dimensional cases.
- Abstract(参考訳): 厳密な非線形時間進化方程式に対する解の数値近似に暗黙の時間ステッピングスキームを用いることは、一般に、より優れた安定性の挙動とより大きな時間ステップの対応するサポート、構造保存特性など、よく知られた利点をもたらす。
しかし、これは数値スキームの時間ステップごとに非線形方程式を解く必要があることによる。
本研究では,厳密な時間進化非線形方程式に対する非線形時間ステップシステムの解を高速化するために,ニュートン法に基づく新しい演算子学習法を提案する。
本稿では,非教師なし学習をオフラインフェーズで支援し,ニュートンの手法を一貫した加速に導くために,ニュートン反復を高速に初期化する学習戦略を提案する。
初期化の改善によって達成されたニュートン法の改良の定量化率と、教師なし学習戦略の一般化誤差の上限を解析する。
これらの理論的結果は,1次元と2次元の両方で提案したニューラルハイブリド・ソルバの効率を実証する広範な数値的な結果によって支持される。
関連論文リスト
- A Structure-Guided Gauss-Newton Method for Shallow ReLU Neural Network [18.06366638807982]
浅いReLUニューラルネットワークを用いて最小二乗問題を解くための構造誘導型ガウスニュートン法(SgGN)を提案する。
目的関数の最小二乗構造とニューラルネットワーク構造の両方を効果的に活用する。
論文 参考訳(メタデータ) (2024-04-07T20:24:44Z) - Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
各成分関数が強く凸であり、リプシッツ連続勾配とヘシアンを持つ有限和最適化問題を考える。
最近提案されたインクリメンタル準ニュートン法は、BFGSの更新に基づいて、局所的な超線形収束率を達成する。
本稿では、対称ランク1更新をインクリメンタルフレームワークに組み込むことにより、より効率的な準ニュートン法を提案する。
論文 参考訳(メタデータ) (2024-02-04T05:54:51Z) - Resource-Adaptive Newton's Method for Distributed Learning [16.588456212160928]
本稿では,Newtonの手法の限界を克服するRANLというアルゴリズムを提案する。
従来の一階法とは異なり、RANLは問題の条件数から著しく独立している。
論文 参考訳(メタデータ) (2023-08-20T04:01:30Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization [3.7565501074323224]
分散整数最適化 (MIO) を用いたSINDyDy問題の厳密な定式化を提案し, 分散制約付き回帰問題を数秒で証明可能な最適性を求める。
正確なモデル発見における我々のアプローチの劇的な改善について説明するとともに、よりサンプリング効率が高く、ノイズに耐性があり、物理的制約の緩和にも柔軟である。
論文 参考訳(メタデータ) (2022-06-01T01:43:45Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
非アフィンパラメトリックな依存、非線形性、興味のモデルにおける対流支配的な規則は、ゆっくりとしたコルモゴロフ n-幅の崩壊をもたらす。
我々は,Carlbergらによって導入された非線形多様体法を,オーバーコロケーションの削減とデコーダの教師/学生による学習により実現した。
本研究では,2次元非線形保存法と2次元浅水モデルを用いて方法論を検証し,時間とともに動的に進化する純粋データ駆動型手法と長期記憶ネットワークとの比較を行った。
論文 参考訳(メタデータ) (2022-03-01T11:16:50Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - A Discrete Variational Derivation of Accelerated Methods in Optimization [68.8204255655161]
最適化のための異なる手法を導出できる変分法を導入する。
我々は1対1の対応において最適化手法の2つのファミリを導出する。
自律システムのシンプレクティシティの保存は、ここでは繊維のみに行われる。
論文 参考訳(メタデータ) (2021-06-04T20:21:53Z) - An efficient Quasi-Newton method for nonlinear inverse problems via
learned singular values [16.135488140265775]
非線形逆問題に適用可能な高効率データ駆動準ニュートン法を提案する。
これを実現するには、単数値分解を使用して、モデル出力から単数値へのマッピングを学習し、更新されたJacobianを計算します。
これにより、ラウンドオフエラーを蓄積することなく、Quasi-Newtonメソッドの高速化が期待できます。
論文 参考訳(メタデータ) (2020-12-14T16:25:42Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
本研究では,Threshold Learned Iterative Shrinkage Algorithming (NLISTA)を導入することでギャップを埋める。
合成データを用いた実験は理論結果と相関し,その手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T11:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。