論文の概要: On Behalf of the Stakeholders: Trends in NLP Model Interpretability in the Era of LLMs
- arxiv url: http://arxiv.org/abs/2407.19200v1
- Date: Sat, 27 Jul 2024 08:00:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 19:21:07.452783
- Title: On Behalf of the Stakeholders: Trends in NLP Model Interpretability in the Era of LLMs
- Title(参考訳): LLM時代のNLPモデル解釈可能性の動向
- Authors: Nitay Calderon, Roi Reichart,
- Abstract要約: この記事では、なぜ解釈可能性が必要なのか、どのように解釈されているのか、という3つの根本的な疑問に対処する。
これらの質問を探索することにより、既存の解釈可能性パラダイム、それらの特性、および異なる利害関係者との関係について検討する。
分析の結果,NLP開発者と非開発者ユーザ,および研究分野の相違が明らかとなり,利害関係者の多様なニーズを浮き彫りにしている。
- 参考スコア(独自算出の注目度): 20.589396689900614
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in NLP systems, particularly with the introduction of LLMs, have led to widespread adoption of these systems by a broad spectrum of users across various domains, impacting decision-making, the job market, society, and scientific research. This surge in usage has led to an explosion in NLP model interpretability and analysis research, accompanied by numerous technical surveys. Yet, these surveys often overlook the needs and perspectives of explanation stakeholders. In this paper, we address three fundamental questions: Why do we need interpretability, what are we interpreting, and how? By exploring these questions, we examine existing interpretability paradigms, their properties, and their relevance to different stakeholders. We further explore the practical implications of these paradigms by analyzing trends from the past decade across multiple research fields. To this end, we retrieved thousands of papers and employed an LLM to characterize them. Our analysis reveals significant disparities between NLP developers and non-developer users, as well as between research fields, underscoring the diverse needs of stakeholders. For example, explanations of internal model components are rarely used outside the NLP field. We hope this paper informs the future design, development, and application of methods that align with the objectives and requirements of various stakeholders.
- Abstract(参考訳): 近年のNLPシステムの進歩、特にLSMの導入により、様々な領域にわたる幅広いユーザーによってこれらのシステムが広く採用され、意思決定、求人市場、社会、科学研究に影響を及ぼしている。
この利用の増加により、NLPモデルの解釈可能性と分析研究が爆発的に増加し、数多くの技術調査が行われた。
しかし、これらの調査は、しばしば説明ステークホルダーのニーズと視点を見落としている。
本稿では,3つの基本的問題に対処する。なぜ解釈可能性が必要なのか,どのように解釈されているのか?
これらの質問を探索することにより、既存の解釈可能性パラダイム、それらの特性、および異なる利害関係者との関係について検討する。
複数の研究分野にわたる過去10年間の傾向を分析し,これらのパラダイムの実践的意義について考察する。
この目的のために、私たちは何千もの論文を回収し、それらを特徴づけるためにLLMを使用しました。
分析の結果,NLP開発者と非開発者ユーザ,および研究分野の相違が明らかとなり,利害関係者の多様なニーズを浮き彫りにしている。
例えば、内部モデルコンポーネントの説明は、NLPフィールドの外ではほとんど使われない。
本稿は,様々な利害関係者の目的や要求に合致する手法の設計,開発,適用について報告する。
関連論文リスト
- A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions [0.0]
大規模言語モデル(LLM)は、前例のないテキスト生成、翻訳、理解能力を提供することで、自然言語処理(NLP)の様々な応用に革命をもたらした。
彼らの広範な展開は、これらのモデルに埋め込まれたバイアスに関して、重大な懸念をもたらしました。
本稿では, LLMにおけるバイアスの包括的調査を行い, これらのバイアスに関するタイプ, ソース, 影響, 緩和戦略について, 広範なレビューを行うことを目的としている。
論文 参考訳(メタデータ) (2024-09-24T19:50:38Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - The What, Why, and How of Context Length Extension Techniques in Large
Language Models -- A Detailed Survey [6.516561905186376]
大規模言語モデル(LLM)の出現は、自然言語処理(NLP)における顕著なブレークスルーを表している。
本研究では,文脈長の延長に伴う固有の課題について検討し,研究者が採用した既存戦略の概要を整理した。
評価基準について,研究コミュニティ内に合意が存在するか検討し,さらに合意が必要な分野を特定する。
論文 参考訳(メタデータ) (2024-01-15T18:07:21Z) - Multi-agent Reinforcement Learning: A Comprehensive Survey [10.186029242664931]
マルチエージェントシステム(MAS)は、多くの現実世界のアプリケーションにおいて広く普及し、重要な存在である。
汎用性にもかかわらず、MASにおける知的意思決定エージェントの開発は、その効果的な実装にいくつかのオープンな課題を提起している。
本調査は,ゲーム理論(GT)と機械学習(ML)による基礎概念の研究に重点を置いて,これらの課題を考察する。
論文 参考訳(メタデータ) (2023-12-15T23:16:54Z) - The Shifted and The Overlooked: A Task-oriented Investigation of
User-GPT Interactions [114.67699010359637]
実際のユーザクエリの大規模なコレクションをGPTに解析する。
ユーザインタラクションでは'設計'や'計画'といったタスクが一般的だが,従来のNLPベンチマークとは大きく異なる。
論文 参考訳(メタデータ) (2023-10-19T02:12:17Z) - The Thousand Faces of Explainable AI Along the Machine Learning Life
Cycle: Industrial Reality and Current State of Research [37.69303106863453]
この知見は機械学習ライフサイクルにおけるXAIの役割と適用性に関する広範なインタビューに基づいている。
また,不透明なAIモデルの非専門家の解釈と理解を可能にするためには,さらなる努力が必要であることも確認した。
論文 参考訳(メタデータ) (2023-10-11T20:45:49Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
大規模言語モデル(LLM)は、人間レベルの知性を達成する上で、顕著な可能性を示している。
本稿では,LLMに基づく自律エージェントの分野を総合的な観点から体系的に検討する。
本稿では、社会科学、自然科学、工学の分野におけるLLMベースの自律エージェントの多様な応用について概観する。
論文 参考訳(メタデータ) (2023-08-22T13:30:37Z) - Surveying (Dis)Parities and Concerns of Compute Hungry NLP Research [75.84463664853125]
我々は,3つのトピック,すなわち環境影響,株式,およびピアレビューへの影響に関する懸念を定量化するための最初の試みを提供する。
我々は、高齢者、アカデミック、産業に関して、異なるグループと異なるグループ内の既存の(異なる)格差を捉えます。
私たちは、発見された格差を軽減するためのレコメンデーションを考案しました。
論文 参考訳(メタデータ) (2023-06-29T12:44:53Z) - Human Factors in Model Interpretability: Industry Practices, Challenges,
and Needs [28.645803845464915]
モデルを計画し、構築し、使用しながら、解釈可能性のためにどのように考え、設計するかを理解するために、業界実践者とのインタビューを行います。
この結果に基づいて、MLモデルを多用する組織内に存在する、解釈可能性の役割、プロセス、目標、戦略を区別する。
本分析から得られた解釈可能性作業の特徴は、モデル解釈可能性はしばしば、異なる役割の人物間の協調と精神モデルの比較を伴っていることを示唆している。
論文 参考訳(メタデータ) (2020-04-23T19:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。