Predicting T-Cell Receptor Specificity
- URL: http://arxiv.org/abs/2407.19349v1
- Date: Sat, 27 Jul 2024 23:21:07 GMT
- Title: Predicting T-Cell Receptor Specificity
- Authors: Tengyao Tu, Wei Zeng, Kun Zhao, Zhenyu Zhang,
- Abstract summary: We established a TCR generative specificity detection framework consisting of an antigen selector and a TCR classifier based on the Random Forest algorithm.
We used the k-fold validation method to compare the performance of our model with ordinary deep learning methods.
- Score: 7.258321140371502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Researching the specificity of TCR contributes to the development of immunotherapy and provides new opportunities and strategies for personalized cancer immunotherapy. Therefore, we established a TCR generative specificity detection framework consisting of an antigen selector and a TCR classifier based on the Random Forest algorithm, aiming to efficiently screen out TCRs and target antigens and achieve TCR specificity prediction. Furthermore, we used the k-fold validation method to compare the performance of our model with ordinary deep learning methods. The result proves that adding a classifier to the model based on the random forest algorithm is very effective, and our model generally outperforms ordinary deep learning methods. Moreover, we put forward feasible optimization suggestions for the shortcomings and challenges of our model found during model implementation.
Related papers
- Convolutional Neural Networks for Predictive Modeling of Lung Disease [34.1086022278394]
Pro-HRnet-CNN is an innovative model combining HRNet and void-convolution techniques.
Compared with the traditional ResNet-50, Pro-HRnet-CNN showed better performance in the feature extraction and recognition of small-size nodules.
arXiv Detail & Related papers (2024-08-08T01:58:46Z) - TCR-GPT: Integrating Autoregressive Model and Reinforcement Learning for T-Cell Receptor Repertoires Generation [6.920411338236452]
T-cell receptors (TCRs) play a crucial role in the immune system by recognizing and binding to specific antigens presented by infected or cancerous cells.
Language models, such as auto-regressive transformers, offer a powerful solution by learning the probability distributions of TCR repertoires.
We introduce TCR-GPT, a probabilistic model built on a decoder-only transformer architecture, designed to uncover and replicate sequence patterns in TCR repertoires.
arXiv Detail & Related papers (2024-08-02T10:16:28Z) - A large language model for predicting T cell receptor-antigen binding specificity [4.120928123714289]
We propose a Masked Language Model (MLM) to overcome limitations in model generalization.
Specifically, we randomly masked sequence segments and train tcrLM to infer the masked segment, thereby extract expressive feature from TCR sequences.
Our extensive experimental results demonstrate that tcrLM achieved AUC values of 0.937 and 0.933 on independent test sets and external validation sets.
arXiv Detail & Related papers (2024-06-24T08:36:40Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - T Cell Receptor Protein Sequences and Sparse Coding: A Novel Approach to
Cancer Classification [4.824821328103934]
T cell receptors (TCRs) are essential proteins for the adaptive immune system.
Recent advancements in sequencing technologies have enabled the comprehensive profiling of TCR repertoires.
This has led to the discovery of TCRs with potent anti-cancer activity and the development of TCR-based immunotherapies.
arXiv Detail & Related papers (2023-04-25T20:43:41Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z) - The effectiveness of factorization and similarity blending [0.0]
Collaborative Filtering (CF) is a technique which allows to leverage past users' preferences data to identify behavioural patterns and exploit them to predict custom recommendations.
We show that blending factorization-based and similarity-based approaches can lead to a significant error decrease (-9.4%) on stand-alone models.
We propose a novel extension of a similarity model, SCSR, which consistently reduce the complexity of the original algorithm.
arXiv Detail & Related papers (2022-09-16T13:11:27Z) - A Provably Efficient Model-Free Posterior Sampling Method for Episodic
Reinforcement Learning [50.910152564914405]
Existing posterior sampling methods for reinforcement learning are limited by being model-based or lack worst-case theoretical guarantees beyond linear MDPs.
This paper proposes a new model-free formulation of posterior sampling that applies to more general episodic reinforcement learning problems with theoretical guarantees.
arXiv Detail & Related papers (2022-08-23T12:21:01Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.