Empowering Clinicians with Medical Decision Transformers: A Framework for Sepsis Treatment
- URL: http://arxiv.org/abs/2407.19380v1
- Date: Sun, 28 Jul 2024 03:40:00 GMT
- Title: Empowering Clinicians with Medical Decision Transformers: A Framework for Sepsis Treatment
- Authors: Aamer Abdul Rahman, Pranav Agarwal, Rita Noumeir, Philippe Jouvet, Vincent Michalski, Samira Ebrahimi Kahou,
- Abstract summary: We propose the medical decision transformer (MeDT) to solve tasks in safety-critical settings.
MeDT uses the decision transformer architecture to learn a policy for drug dosage recommendation.
MeDT captures complex dependencies among a patient's medical history, treatment decisions, outcomes, and short-term effects on stability.
- Score: 5.0005174003014865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline reinforcement learning has shown promise for solving tasks in safety-critical settings, such as clinical decision support. Its application, however, has been limited by the lack of interpretability and interactivity for clinicians. To address these challenges, we propose the medical decision transformer (MeDT), a novel and versatile framework based on the goal-conditioned reinforcement learning paradigm for sepsis treatment recommendation. MeDT uses the decision transformer architecture to learn a policy for drug dosage recommendation. During offline training, MeDT utilizes collected treatment trajectories to predict administered treatments for each time step, incorporating known treatment outcomes, target acuity scores, past treatment decisions, and current and past medical states. This analysis enables MeDT to capture complex dependencies among a patient's medical history, treatment decisions, outcomes, and short-term effects on stability. Our proposed conditioning uses acuity scores to address sparse reward issues and to facilitate clinician-model interactions, enhancing decision-making. Following training, MeDT can generate tailored treatment recommendations by conditioning on the desired positive outcome (survival) and user-specified short-term stability improvements. We carry out rigorous experiments on data from the MIMIC-III dataset and use off-policy evaluation to demonstrate that MeDT recommends interventions that outperform or are competitive with existing offline reinforcement learning methods while enabling a more interpretable, personalized and clinician-directed approach.
Related papers
- Exploring LLM-based Data Annotation Strategies for Medical Dialogue Preference Alignment [22.983780823136925]
This research examines the use of Reinforcement Learning from AI Feedback (RLAIF) techniques to improve healthcare dialogue models.
We argue that the primary challenges in current RLAIF research for healthcare are the limitations of automated evaluation methods.
We present a new evaluation framework based on standardized patient examinations.
arXiv Detail & Related papers (2024-10-05T10:29:19Z) - Development and Validation of Heparin Dosing Policies Using an Offline Reinforcement Learning Algorithm [0.7519918949973486]
This study proposes a reinforcement learning-based personalized optimal heparin dosing policy.
A batch-constrained policy was implemented to minimize out-of-distribution errors in an offline RL environment.
This research enhances heparin administration practices and establishes a precedent for the development of sophisticated decision-support tools in medicine.
arXiv Detail & Related papers (2024-09-24T05:20:38Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Learning Optimal Treatment Strategies for Sepsis Using Offline
Reinforcement Learning in Continuous Space [4.031538204818658]
We propose a new medical decision model based on historical data to help clinicians recommend the best reference option for real-time treatment.
Our model combines offline reinforcement learning with deep reinforcement learning to address the problem that traditional reinforcement learning in healthcare cannot interact with the environment.
arXiv Detail & Related papers (2022-06-22T16:17:21Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Learning Individualized Treatment Rules with Estimated Translated
Inverse Propensity Score [29.606141542532356]
In this paper, we focus on learning individualized treatment rules (ITRs) to derive a treatment policy.
In our framework, we cast ITRs learning as a contextual bandit problem and minimize the expected risk of the treatment policy.
As a long-term goal, our derived policy might eventually lead to better clinical guidelines for the administration of IV and VP.
arXiv Detail & Related papers (2020-07-02T13:13:56Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.