Exploring LLM-based Data Annotation Strategies for Medical Dialogue Preference Alignment
- URL: http://arxiv.org/abs/2410.04112v1
- Date: Sat, 5 Oct 2024 10:29:19 GMT
- Title: Exploring LLM-based Data Annotation Strategies for Medical Dialogue Preference Alignment
- Authors: Chengfeng Dou, Ying Zhang, Zhi Jin, Wenpin Jiao, Haiyan Zhao, Yongqiang Zhao, Zhengwei Tao,
- Abstract summary: This research examines the use of Reinforcement Learning from AI Feedback (RLAIF) techniques to improve healthcare dialogue models.
We argue that the primary challenges in current RLAIF research for healthcare are the limitations of automated evaluation methods.
We present a new evaluation framework based on standardized patient examinations.
- Score: 22.983780823136925
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This research examines the use of Reinforcement Learning from AI Feedback (RLAIF) techniques to improve healthcare dialogue models, with the aim of tackling the challenges of preference-aligned data annotation while reducing the reliance on medical experts. We argue that the primary challenges in current RLAIF research for healthcare are the limitations of automated evaluation methods and the difficulties in accurately representing physician preferences. To address these challenges, we present a new evaluation framework based on standardized patient examinations. This framework is designed to objectively assess the effectiveness of large language models (LLMs) in guiding users and following instructions, enabling a comprehensive comparison across different models. Furthermore, our investigation of effective ways to express physician preferences using Constitutional AI algorithms highlighted the particular effectiveness of flowcharts. Utilizing this finding, we introduce an innovative agent-based approach for annotating preference data. This approach autonomously creates medical dialogue flows tailored to the patient's condition, demonstrates strong generalization abilities, and reduces the need for expert involvement. Our results show that the agent-based approach outperforms existing RLAIF annotation methods in standardized patient examinations and surpasses current open source medical dialogue LLMs in various test scenarios.
Related papers
- RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
arXiv Detail & Related papers (2023-11-21T23:53:27Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - PlugMed: Improving Specificity in Patient-Centered Medical Dialogue
Generation using In-Context Learning [20.437165038293426]
The patient-centered medical dialogue systems strive to offer diagnostic interpretation services to users who are less knowledgeable about medical knowledge.
It is difficult for the large language models (LLMs) to guarantee the specificity of responses in spite of its promising performance.
Inspired by in-context learning, we propose PlugMed, a Plug-and-Play Medical Dialogue System.
arXiv Detail & Related papers (2023-05-19T08:18:24Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Explainable Deep Learning in Healthcare: A Methodological Survey from an
Attribution View [36.025217954247125]
We introduce the methods for interpretability in depth and comprehensively as a methodological reference for future researchers or clinical practitioners.
We discuss how these methods have been adapted and applied to healthcare problems and how they can help physicians better understand these data-driven technologies.
arXiv Detail & Related papers (2021-12-05T17:12:53Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.