論文の概要: Interpretable Triplet Importance for Personalized Ranking
- arxiv url: http://arxiv.org/abs/2407.19469v1
- Date: Sun, 28 Jul 2024 11:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:02:25.088223
- Title: Interpretable Triplet Importance for Personalized Ranking
- Title(参考訳): パーソナライズされたランク付けのための解釈可能な三重項の重要性
- Authors: Bowei He, Chen Ma,
- Abstract要約: 本稿では,3重項の重要度を解釈可能な方法で測定するための形状的価値に基づく手法を提案する。
我々のモデルは一貫して最先端の手法より優れています。
- 参考スコア(独自算出の注目度): 5.409302364904161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized item ranking has been a crucial component contributing to the performance of recommender systems. As a representative approach, pairwise ranking directly optimizes the ranking with user implicit feedback by constructing (\textit{user}, \textit{positive item}, \textit{negative item}) triplets. Several recent works have noticed that treating all triplets equally may hardly achieve the best effects. They assign different importance scores to negative items, user-item pairs, or triplets, respectively. However, almost all the generated importance scores are groundless and hard to interpret, thus far from trustworthy and transparent. To tackle these, we propose the \textit{Triplet Shapley} -- a Shapely value-based method to measure the triplet importance in an interpretable manner. Due to the huge number of triplets, we transform the original Shapley value calculation to the Monte Carlo (MC) approximation, where the guarantee for the approximation unbiasedness is also provided. To stabilize the MC approximation, we adopt a control covariates-based method. Finally, we utilize the triplet Shapley value to guide the resampling of important triplets for benefiting the model learning. Extensive experiments are conducted on six public datasets involving classical matrix factorization- and graph neural network-based recommendation models. Empirical results and subsequent analysis show that our model consistently outperforms the state-of-the-art methods.
- Abstract(参考訳): パーソナライズされたアイテムランキングは、レコメンデーションシステムのパフォーマンスに寄与する重要な要素である。
代表的アプローチとして、ペアワイズランキングは、(\textit{user}, \textit{ positive item}, \textit{ negative item})三つ組を構成することで、ユーザの暗黙のフィードバックでランキングを直接最適化する。
いくつかの最近の研究は、全ての三つ子を平等に扱うことは、最良の効果を得られないことに気付いた。
それらはそれぞれ、ネガティブな項目、ユーザとイタムのペア、トリプレットに異なる重要性のスコアを割り当てる。
しかし、生成された重要度はほとんどが根拠がなく、解釈が難しい。
そこで本研究では,3重項の重要度を解釈可能な方法で測定する,形状的価値に基づく方法であるtextit{Triplet Shapley}を提案する。
三重項の数が膨大であるため、元のShapley値計算をモンテカルロ近似に変換し、近似の不偏性も保証する。
MC近似を安定化するために,制御共変量に基づく手法を採用する。
最後に,三重項Shapley値を用いて重要な三重項の再サンプリングを誘導し,モデルの学習に役立てる。
古典行列因数分解とグラフニューラルネットワークに基づくレコメンデーションモデルを含む6つの公開データセットに対して、大規模な実験を行う。
実験結果とその後の分析により,我々のモデルは最先端の手法よりも一貫して優れていることが示された。
関連論文リスト
- Multi-threshold Deep Metric Learning for Facial Expression Recognition [60.26967776920412]
本稿では,難易度検証を回避する多閾値深度学習手法を提案する。
その結果,三重項損失のそれぞれの閾値は本質的にクラス間変動の特異な分布を決定することがわかった。
埋め込み層はスライスで構成されており、より情報的で差別的な特徴である。
論文 参考訳(メタデータ) (2024-06-24T08:27:31Z) - Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning [52.70210390424605]
本研究では,文献から選択した3つの帰納バイアスを持つニューラルネットワークオートエンコーダを提案する。
しかし、実際には、これらの帰納バイアスをインスタンス化する既存の技術を組み合わせることは、大きな利益をもたらすことに失敗する。
学習問題を単純化する3つの手法に適応し、不変性を安定化する鍵正則化項とクォーシュ縮退インセンティブを提案する。
結果のモデルであるTripodは、4つのイメージアンタングルメントベンチマークのスイートで最先端の結果を得る。
論文 参考訳(メタデータ) (2024-04-16T04:52:41Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - Walk-and-Relate: A Random-Walk-based Algorithm for Representation
Learning on Sparse Knowledge Graphs [5.444459446244819]
本稿では,データ空間の問題に対処するため,三重項数を増加させる効率的な方法を提案する。
また,メタパスの集合から情報的メタパスを高精度かつ効率的に抽出する手法も提案する。
提案したアプローチはモデルに依存しず、拡張トレーニングデータセットは、任意のKG埋め込みアプローチを最初から使用することができる。
論文 参考訳(メタデータ) (2022-09-19T05:35:23Z) - Adapting Triplet Importance of Implicit Feedback for Personalized
Recommendation [43.85549591503592]
インプシットフィードバックは、パーソナライズされたレコメンデーションサービスを開発するために頻繁に使用される。
本稿では,Triplet Importance Learning (TIL) という新たなトレーニングフレームワークを提案する。
提案手法は,トップkレコメンデーションのRecall@kにおいて,既存モデルよりも3~21%優れていた。
論文 参考訳(メタデータ) (2022-08-02T19:44:47Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Joint Shapley values: a measure of joint feature importance [6.169364905804678]
結合Shapley値を導入し、Shapley公理を直接拡張する。
ジョイントシェープの値は、モデルの予測に対する特徴の平均的な影響を測る。
ゲームの結果、ジョイントシェープの値は既存の相互作用指標とは異なる洞察を示します。
論文 参考訳(メタデータ) (2021-07-23T17:22:37Z) - Maximizing Conditional Entropy for Batch-Mode Active Learning of
Perceptual Metrics [14.777274711706653]
最大エントロピー原理を用いたバッチモードアクティブメトリック学習の新たなアプローチを提案する。
単調に増大する部分モジュラーエントロピー関数を利用して効率的なグリードアルゴリズムを構築する。
私たちのアプローチは、トリプルレット全体の情報性と多様性のバランスをとる統一されたスコアを定義する最初のバッチモードアクティブメトリック学習方法です。
論文 参考訳(メタデータ) (2021-02-15T06:55:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。