Are LLMs Good Annotators for Discourse-level Event Relation Extraction?
- URL: http://arxiv.org/abs/2407.19568v3
- Date: Sat, 22 Feb 2025 19:05:36 GMT
- Title: Are LLMs Good Annotators for Discourse-level Event Relation Extraction?
- Authors: Kangda Wei, Aayush Gautam, Ruihong Huang,
- Abstract summary: We assess the effectiveness of Large Language Models (LLMs) in addressing discourse-level event relation extraction tasks.<n> Evaluation is conducted using an commercial model, GPT-3.5, and an open-source model, LLaMA-2.
- Score: 15.365993658296016
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated proficiency in a wide array of natural language processing tasks. However, its effectiveness over discourse-level event relation extraction (ERE) tasks remains unexplored. In this paper, we assess the effectiveness of LLMs in addressing discourse-level ERE tasks characterized by lengthy documents and intricate relations encompassing coreference, temporal, causal, and subevent types. Evaluation is conducted using an commercial model, GPT-3.5, and an open-source model, LLaMA-2. Our study reveals a notable underperformance of LLMs compared to the baseline established through supervised learning. Although Supervised Fine-Tuning (SFT) can improve LLMs performance, it does not scale well compared to the smaller supervised baseline model. Our quantitative and qualitative analysis shows that LLMs have several weaknesses when applied for extracting event relations, including a tendency to fabricate event mentions, and failures to capture transitivity rules among relations, detect long distance relations, or comprehend contexts with dense event mentions. Code available at: https://github.com/WeiKangda/LLM-ERE.git.
Related papers
- Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.
It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - Will LLMs Replace the Encoder-Only Models in Temporal Relation Classification? [2.1861408994125253]
Large Language Models (LLM) have recently shown promising performance in temporal reasoning tasks.
Recent studies have tested the LLMs' performance in detecting temporal relations of closed-source models only.
arXiv Detail & Related papers (2024-10-14T13:10:45Z) - LLM with Relation Classifier for Document-Level Relation Extraction [25.587850398830252]
Large language models (LLMs) have created a new paradigm for natural language processing.
This paper investigates the causes of this performance gap, identifying the dispersion of attention by LLMs due to entity pairs without relations as a key factor.
arXiv Detail & Related papers (2024-08-25T16:43:19Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - LinkGPT: Teaching Large Language Models To Predict Missing Links [23.57145845001286]
Large Language Models (LLMs) have shown promising results on various language and vision tasks.
Recently, there has been growing interest in applying LLMs to graph-based tasks, particularly on Text-Attributed Graphs (TAGs)
arXiv Detail & Related papers (2024-06-07T04:54:36Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - Small Language Model Is a Good Guide for Large Language Model in Chinese
Entity Relation Extraction [13.344709924683471]
In this paper, we propose SLCoLM, a model collaboration framework, to mitigate the data long-tail problem.
We use the textitTraining-Guide-Predict'' strategy to combine the strengths of pre-trained language models (PLMs) and large language models (LLMs)
Our experiments on a RE dataset rich in relation types show that the approach in this paper facilitates RE of long-tail relation types.
arXiv Detail & Related papers (2024-02-22T08:26:56Z) - Chain of History: Learning and Forecasting with LLMs for Temporal
Knowledge Graph Completion [24.545917737620197]
Temporal Knowledge Graph Completion (TKGC) is a complex task involving the prediction of missing event links at future timestamps.
This paper aims to provide a comprehensive perspective on harnessing the advantages of Large Language Models for reasoning in temporal knowledge graphs.
arXiv Detail & Related papers (2024-01-11T17:42:47Z) - Are Large Language Models Temporally Grounded? [38.481606493496514]
We provide Large language models (LLMs) with textual narratives.
We probe them with respect to their common-sense knowledge of the structure and duration of events.
We evaluate state-of-the-art LLMs on three tasks reflecting these abilities.
arXiv Detail & Related papers (2023-11-14T18:57:15Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.