論文の概要: Enhancing Code Translation in Language Models with Few-Shot Learning via Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2407.19619v1
- Date: Mon, 29 Jul 2024 00:41:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 15:25:50.122616
- Title: Enhancing Code Translation in Language Models with Few-Shot Learning via Retrieval-Augmented Generation
- Title(参考訳): Retrieval-Augmented GenerationによるFew-Shot Learningを用いた言語モデルにおけるコード翻訳の強化
- Authors: Manish Bhattarai, Javier E. Santos, Shawn Jones, Ayan Biswas, Boian Alexandrov, Daniel O'Malley,
- Abstract要約: 本稿では、Few-Shot Learningによるコード翻訳を強化する新しい手法を提案する。
既存のコード翻訳のレポジトリを活用することで、最も関連性の高い例を動的に検索し、新しいコードセグメントを翻訳する際にモデルをガイドします。
Retrieval-Augmented Generationに基づく本手法は,翻訳品質を大幅に向上させる。
- 参考スコア(独自算出の注目度): 1.9726019592585404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large language models (LLMs) has significantly advanced the field of code translation, enabling automated translation between programming languages. However, these models often struggle with complex translation tasks due to inadequate contextual understanding. This paper introduces a novel approach that enhances code translation through Few-Shot Learning, augmented with retrieval-based techniques. By leveraging a repository of existing code translations, we dynamically retrieve the most relevant examples to guide the model in translating new code segments. Our method, based on Retrieval-Augmented Generation (RAG), substantially improves translation quality by providing contextual examples from which the model can learn in real-time. We selected RAG over traditional fine-tuning methods due to its ability to utilize existing codebases or a locally stored corpus of code, which allows for dynamic adaptation to diverse translation tasks without extensive retraining. Extensive experiments on diverse datasets with open LLM models such as Starcoder, Llama3-70B Instruct, CodeLlama-34B Instruct, Granite-34B Code Instruct, and Mixtral-8x22B, as well as commercial LLM models like GPT-3.5 Turbo and GPT-4o, demonstrate our approach's superiority over traditional zero-shot methods, especially in translating between Fortran and CPP. We also explored varying numbers of shots i.e. examples provided during inference, specifically 1, 2, and 3 shots and different embedding models for RAG, including Nomic-Embed, Starencoder, and CodeBERT, to assess the robustness and effectiveness of our approach.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、コード翻訳の分野を大幅に進歩させ、プログラミング言語間の自動翻訳を可能にした。
しかし、これらのモデルは文脈的理解が不十分なため、複雑な翻訳タスクに苦しむことが多い。
本稿では,Few-Shot Learningによるコード翻訳を改良する新しい手法を提案する。
既存のコード翻訳のレポジトリを活用することで、最も関連性の高い例を動的に検索し、新しいコードセグメントを翻訳する際にモデルをガイドします。
提案手法は,Retrieval-Augmented Generation (RAG)に基づいて,リアルタイムに学習可能な文脈例を提供することで,翻訳品質を大幅に向上させる。
既存のコードベースやローカルに保存されたコードコーパスを活用できるため,従来の微調整方式よりもRAGを選択した。
Starcoder、Llama3-70B Instruct、CodeLlama-34B Instruct、Granite-34B Code Instruct、Mixtral-8x22BといったオープンLLMモデルや、GPT-3.5 TurboやGPT-4oといった商用LLMモデルによる大規模な実験では、FortranとCPPの翻訳において、従来のゼロショットメソッドよりもアプローチの方が優れていることが示されている。
また,提案手法のロバスト性や有効性を評価するため,推論中に提供される例,特に1,2,3ショット,Nomic-Embed,Starencoder,CodeBERTなどのRAGの埋め込みモデルについて検討した。
関連論文リスト
- A Case Study on Context-Aware Neural Machine Translation with Multi-Task Learning [49.62044186504516]
文書レベルのニューラルネットワーク翻訳(DocNMT)では、コンテクストやソース文のエンコーディングにおいてマルチエンコーダアプローチが一般的である。
近年の研究では、コンテキストエンコーダがノイズを発生させ、コンテキストの選択に頑健なモデルを実現することが示されている。
本稿では、マルチタスク学習(MTL)を通してコンテキストエンコーディングを明示的にモデル化することで、コンテキスト選択に敏感なモデルを実現することにより、この観察をさらに検討する。
論文 参考訳(メタデータ) (2024-07-03T12:50:49Z) - Investigating the translation capabilities of Large Language Models trained on parallel data only [1.5974665548135587]
大規模言語モデル(LLM)は、自然言語処理(NLP)タスクの幅広い範囲で例外的な習熟性を示している。
PLUMEは,カタルーニャ語中心の並列例に特化して訓練された語彙サイズ(32k,128k,256k)の異なる3つの2B LLMのコレクションである。
これらのモデルは、16の教師付き翻訳方向と56のゼロショット上で、以前のエンコーダ・デコーダアーキテクチャと互換性がある。
論文 参考訳(メタデータ) (2024-06-13T14:08:56Z) - Exploring the Impact of the Output Format on the Evaluation of Large Language Models for Code Translation [8.81447711370817]
我々は、11の人気のある命令付き大規模言語モデル(LLM)の出力を経験的に分析する。
この結果から,プロンプトエンジニアリングと正規表現の戦略的組み合わせにより,モデル生成出力からソースコードを効果的に抽出できることが示唆された。
論文 参考訳(メタデータ) (2024-03-25T21:41:31Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
本研究では、コンパイラ中間表現(IR)を活用して、Code-LMの多言語機能を改善する可能性について検討する。
まず,約400万のソースコードファイルからなる並列データセットであるSLTransをコンパイルする。
次に、SLTransにおける因果言語モデリングトレーニングを継続して実施し、Code-LMはIR言語を学習せざるを得なかった。
IRCoderと呼ばれる結果のモデルは、さまざまなコード生成タスクやメトリクスに対して、サイズと一貫性のあるゲインを表示します。
論文 参考訳(メタデータ) (2024-03-06T17:52:08Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
本稿では,オープンソースの事前学習型LLMであるCodeFuse-13Bを紹介する。
英語と中国語の両方のプロンプトによるコード関連のタスク用に特別に設計されている。
CodeFuseは、高品質な事前トレーニングデータセットを利用することで、その効果を達成する。
論文 参考訳(メタデータ) (2023-10-10T02:38:44Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。
我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。
本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-10T08:15:40Z) - Extrapolating Multilingual Understanding Models as Multilingual
Generators [82.1355802012414]
本稿では,多言語理解モデルに統一モデルを得るための生成能力を付与する手法について検討する。
少数の新しいパラメータを持つ多言語ジェネレータにエンコーダを適用するために,textbfSemantic-textbfGuided textbfAlignment-then-Denoising (SGA)アプローチを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:33:21Z) - Few-shot Knowledge Graph-to-Text Generation with Pretrained Language
Models [42.38563175680914]
本稿では,知識グラフ(KG)の事実を記述した自然言語テキストの自動生成方法について検討する。
数ショットの設定を考えると、言語理解と生成において事前学習された言語モデル(PLM)の優れた能力を利用する。
論文 参考訳(メタデータ) (2021-06-03T06:48:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。