論文の概要: Unmasking unlearnable models: a classification challenge for biomedical images without visible cues
- arxiv url: http://arxiv.org/abs/2407.19773v1
- Date: Mon, 29 Jul 2024 08:12:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 14:45:43.878989
- Title: Unmasking unlearnable models: a classification challenge for biomedical images without visible cues
- Title(参考訳): 未学習モデル--可視的手がかりのないバイオメディカル画像の分類問題
- Authors: Shivam Kumar, Samrat Chatterjee,
- Abstract要約: 我々は総合的な探索を通じてMGMT状態予測の複雑さを解明する。
我々の発見は、現在のモデルは学習不可能であり、現実世界のアプリケーションを調べるために新しいアーキテクチャを必要とする可能性があることを強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predicting traits from images lacking visual cues is challenging, as algorithms are designed to capture visually correlated ground truth. This problem is critical in biomedical sciences, and their solution can improve the efficacy of non-invasive methods. For example, a recent challenge of predicting MGMT methylation status from MRI images is critical for treatment decisions of glioma patients. Using less robust models poses a significant risk in these critical scenarios and underscores the urgency of addressing this issue. Despite numerous efforts, contemporary models exhibit suboptimal performance, and underlying reasons for this limitation remain elusive. In this study, we demystify the complexity of MGMT status prediction through a comprehensive exploration by performing benchmarks of existing models adjoining transfer learning. Their architectures were further dissected by observing gradient flow across layers. Additionally, a feature selection strategy was applied to improve model interpretability. Our finding highlighted that current models are unlearnable and may require new architectures to explore applications in the real world. We believe our study will draw immediate attention and catalyse advancements in predictive modelling with non-visible cues.
- Abstract(参考訳): 視覚的手がかりを欠いた画像の特徴を予測することは困難であり、アルゴリズムは視覚的に相関した地上の真実を捉えるように設計されている。
この問題はバイオメディカルサイエンスにおいて重要であり、そのソリューションは非侵襲的な方法の有効性を向上させることができる。
例えば、MRI画像からMGMTメチル化状態を予測するという最近の課題は、グリオーマ患者の治療決定に重要である。
よりロバストなモデルの使用は、これらの重要なシナリオにおいて重大なリスクをもたらし、この問題に対処する緊急性を強調します。
多くの努力にもかかわらず、現代モデルは最適以下の性能を示しており、この制限の根底にある理由はいまだ解明されていない。
本研究では,移動学習に付随する既存モデルのベンチマークを実行することで,MGMT状態予測の複雑さを包括的探索によって解明する。
それらの構造は層をまたいだ勾配流を観察することによってさらに分断された。
さらに、モデル解釈性を改善するために特徴選択戦略を適用した。
我々の発見は、現在のモデルは学習不可能であり、現実世界のアプリケーションを調べるために新しいアーキテクチャを必要とする可能性があることを強調した。
本研究は, 予測モデルと非可視的手法の即時的注意を惹きつけるとともに, 予測モデルの進歩を触媒するものであると考えている。
関連論文リスト
- Trustworthy image-to-image translation: evaluating uncertainty calibration in unpaired training scenarios [0.0]
マンモグラフィスクリーニングは乳がんの検出に有効な方法であり、早期診断を容易にする。
ディープニューラルネットワークはいくつかの研究で有効であることが示されているが、その傾向は一般化と誤診のリスクをかなり残している。
汎用性を向上させるために、未ペア型ニューラルスタイル転送モデルに基づくデータ拡張スキームが提案されている。
3つのオープンアクセスマンモグラフィーデータセットと1つの非医療画像データセットから解析した画像パッチを用いて、それらの性能を評価する。
論文 参考訳(メタデータ) (2025-01-29T11:09:50Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Dynamic Entity-Masked Graph Diffusion Model for histopathological image Representation Learning [25.197342542821843]
動的Entity-Masked Graph Diffusion Modelによる自己管理型病理画像表現学習法であるH-MGDMを紹介する。
具体的には,予備訓練において,相補的な部分グラフを潜時拡散条件として,自己教師対象として用いることを提案する。
論文 参考訳(メタデータ) (2024-12-13T10:18:36Z) - MedMAP: Promoting Incomplete Multi-modal Brain Tumor Segmentation with Alignment [20.358300924109162]
臨床ではMRIの特定のモダリティが欠如している可能性があるため、より困難なシナリオが提示される。
知識蒸留、ドメイン適応、共有潜在空間は一般的に有望な戦略として現れている。
本稿では,事前学習モデルの置換として,係わるモダリティの潜在的特徴を適切に定義された分布アンカーに整合させる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-08-18T13:16:30Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Unmasking Dementia Detection by Masking Input Gradients: A JSM Approach
to Model Interpretability and Precision [1.5501208213584152]
本稿では,多段階進行に対するアルツハイマー病(AD)分類の解釈可能なマルチモーダルモデルを導入し,ヤコビアン・サリエンシ・マップ(JSM)をモダリティに依存しないツールとして組み込んだ。
アブレーション研究を含む評価では、モデルデバッグと解釈にJSMを用いることの有効性が示され、モデル精度も著しく向上した。
論文 参考訳(メタデータ) (2024-02-25T06:53:35Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
我々は、AUCによる新たな深層学習手法による機会と課題を提示し、議論する(別名、アンダーラインbfディープアンダーラインbfAUC分類)。
論文 参考訳(メタデータ) (2021-11-01T15:31:32Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。