CardioSyntax: end-to-end SYNTAX score prediction -- dataset, benchmark and method
- URL: http://arxiv.org/abs/2407.19894v2
- Date: Tue, 06 May 2025 11:18:38 GMT
- Title: CardioSyntax: end-to-end SYNTAX score prediction -- dataset, benchmark and method
- Authors: Alexander Ponomarchuk, Ivan Kruzhilov, Galina Zubkova, Artem Shadrin, Ruslan Utegenov, Ivan Bessonov, Pavel Blinov,
- Abstract summary: The SYNTAX score has become a widely used measure of coronary disease severity.<n>This paper introduces a new medical regression and classification problem - automatically estimating SYNTAX score from coronary angiography.<n>We present a comprehensive CardioSYNTAX dataset of 3,018 patients for the SYNTAX score estimation and coronary dominance classification.
- Score: 36.440495538328754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The SYNTAX score has become a widely used measure of coronary disease severity, crucial in selecting the optimal mode of the revascularization procedure. This paper introduces a new medical regression and classification problem - automatically estimating SYNTAX score from coronary angiography. Our study presents a comprehensive CardioSYNTAX dataset of 3,018 patients for the SYNTAX score estimation and coronary dominance classification. The dataset features a balanced distribution of individuals with zero and non-zero scores. This dataset includes a first-of-its-kind, complete coronary angiography samples captured through a multi-view X-ray video, allowing one to observe coronary arteries from multiple perspectives. Furthermore, we present a novel, fully automatic end-to-end method for estimating the SYNTAX. For such a difficult task, we have achieved a solid coefficient of determination R2 of 0.51 in score value prediction and 77.3% accuracy for zero score classification.
Related papers
- CXR-LT 2024: A MICCAI challenge on long-tailed, multi-label, and zero-shot disease classification from chest X-ray [64.2434525370243]
The CXR-LT series is a community-driven initiative designed to enhance lung disease classification using chest X-rays.<n>The CXR-LT 2024 expands the dataset to 377,110 chest X-rays (CXRs) and 45 disease labels, including 19 new rare disease findings.<n>This paper provides an overview of CXR-LT 2024, detailing the data curation process and consolidating state-of-the-art solutions.
arXiv Detail & Related papers (2025-06-09T17:53:31Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
This paper examines the limitations of traditional sepsis screening tools like Systemic Inflammatory Response Syndrome, Modified Early Warning Score, and Quick Sequential Organ Failure Assessment.
We propose using machine learning techniques - Random Forest, Extreme Gradient Boosting, and Decision Tree models - to predict sepsis onset.
Our study evaluates these models individually and in a combined meta-ensemble approach using key metrics such as Accuracy, Precision, Recall, F1 score, and Area Under the Receiver Operating Characteristic Curve.
arXiv Detail & Related papers (2024-07-11T00:51:32Z) - Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning [3.656984996633334]
This study introduces an end-to-end machine learning solution developed as part of our solution for the MICCAI 2023 Automatic Region-based Coronary Artery Disease diagnostics.
It aims to benchmark solutions for multivessel coronary artery segmentation and potential stenotic lesion localisation from X-ray coronary angiograms.
Our solution achieved a mean F1 score of $37.69%$ for coronary artery segmentation, and $39.41%$ for stenosis localisation, positioning our team in the 5th position on both leaderboards.
arXiv Detail & Related papers (2023-10-27T08:03:12Z) - YOLO-Angio: An Algorithm for Coronary Anatomy Segmentation [13.603729336413833]
We present our solution to the Automatic Region-based Coronary Artery Disease diagnostics using X-ray angiography images (ARCADE) challenge held at MICCAI 2023.
Our three-stage approach combines preprocessing and feature selection by classical computer vision to enhance vessel contrast.
A final segmentation is based on a logic-based approach to reconstruct the coronary tree in a graph-based sorting method.
arXiv Detail & Related papers (2023-10-24T15:02:02Z) - DeepVox and SAVE-CT: a contrast- and dose-independent 3D deep learning
approach for thoracic aorta segmentation and aneurysm prediction using
computed tomography scans [2.3135717943756307]
Thoracic aortic aneurysm (TAA) is a fatal disease which potentially leads to dissection or rupture through progressive enlargement of the aorta.
Scans for other indications could help on this screening, however if acquired without contrast enhancement or with low dose protocol, it can make the clinical evaluation difficult.
In this study, it was selected 587 unique CT scans including control and TAA patients, acquired with low and standard dose protocols, with or without contrast enhancement.
A novel segmentation model, DeepVox, exhibited dice score coefficients of 0.932 and 0.897 for development and test sets, respectively, with faster training speed in comparison to models
arXiv Detail & Related papers (2023-10-23T19:48:58Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
We propose a two-step deep-learning framework to partially automate the detection of stenosis from X-ray coronary angiography images.
We achieved a 0.97 accuracy on the task of classifying the Left/Right Coronary Artery angle view and 0.68/0.73 recall on the determination of the regions of interest, for LCA and RCA, respectively.
arXiv Detail & Related papers (2021-03-04T11:45:54Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs.
In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation.
Experimental results demonstrated that the proposed method achieved an average Dice score of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patient.
arXiv Detail & Related papers (2021-01-25T01:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.