論文の概要: Inference acceleration for large language models using "stairs" assisted greedy generation
- arxiv url: http://arxiv.org/abs/2407.19947v1
- Date: Mon, 29 Jul 2024 12:29:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:56:27.234444
- Title: Inference acceleration for large language models using "stairs" assisted greedy generation
- Title(参考訳): 階段」支援欲求生成を用いた大規模言語モデルの推論高速化
- Authors: Domas Grigaliūnas, Mantas Lukoševičius,
- Abstract要約: 我々は,階段支援グリーディ世代の実装を提案している。
これは、小さなモデルの高速な生成、大きなモデルのバッチ予測、そして"階段"バリデーションを利用する修正された補助生成手法である。
その結果、テキスト生成タスクにおいて、スタンドアローンの大きなLLM予測と比較して、9.58から17.24パーセントの推論時間短縮が見られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) with billions of parameters are known for their impressive predicting capabilities but require lots of resources to run. With their massive rise in popularity, even a small reduction in required resources could have an impact on environment. On the other hand, smaller models require fewer resources but may sacrifice accuracy. In this work, we are proposing an implementation of ``stairs'' assisted greedy generation. It is a modified assisted generation methodology that makes use of a smaller model's fast generation, large model's batch prediction, and "stairs" validation in order to achieve a speed up in prediction generation. Results show between 9.58 and 17.24 percent inference time reduction compared to a stand-alone large LLM prediction in a text generation task without a loss in accuracy.
- Abstract(参考訳): 数十億のパラメータを持つ大規模言語モデル(LLM)は、その印象的な予測能力で知られていますが、実行には多くのリソースが必要です。
人気が大幅に高まれば、必要なリソースの削減さえも環境に影響を及ぼす可能性がある。
一方、より小さなモデルは少ないリソースを必要とするが、精度を犠牲にする可能性がある。
本研究では,「階段」支援型欲望世代の実装を提案する。
これは、予測生成の高速化を達成するために、より小さなモデルの高速な生成、大きなモデルのバッチ予測、および"階段"バリデーションを利用する修正支援生成手法である。
その結果, テキスト生成タスクにおいて, 精度を損なうことなく, 9.58~17.24パーセントの推測時間短縮が可能となった。
関連論文リスト
- Predicting Emergent Capabilities by Finetuning [98.9684114851891]
微調整された言語モデルでは,出現頻度の低いモデルに展開するスケーリングのポイントをシフトできることがわかった。
提案手法は4つの標準NLPベンチマークを用いて検証する。
いくつかのケースでは、最大4倍の計算でトレーニングされたモデルが出現したかどうかを正確に予測できる。
論文 参考訳(メタデータ) (2024-11-25T01:48:09Z) - Large Language Model Pruning [0.0]
LLMに特化したモデルプルーニング手法を提案する。
提案手法は深層学習モデルの説明可能性を強調する。
また、大規模モデルにおけるプルーニングと小規模モデルにおけるプルーニングの違いについても検討する。
論文 参考訳(メタデータ) (2024-05-24T18:22:15Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
大規模言語モデル(LLM)は大きな成功を収めたが、敵の摂動に対する脆弱性は大きな懸念を引き起こしている。
本稿では,LLMのマルチタスク特性を活用して,まずノイズの入力を識別し,次にこれらの復号化バージョンに基づいて予測を行う。
LLMのロバスト性を高めるために個別のモデルを訓練する必要がある従来のコンピュータビジョンのスムース化技術とは異なり、本手法は効率と柔軟性を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-18T15:47:00Z) - Speculative Streaming: Fast LLM Inference without Auxiliary Models [21.454206732725563]
投機的ストリーミング(英: Speculative Streaming)は、単一モデル投機的復号法である。
これは、次のトークン予測から将来のn-gram予測に微調整対象を変更することで、ターゲットモデルにドラフトを融合させる。
1.8から3.1Xのデコーディングを、多様なタスクセットで高速化する。
論文 参考訳(メタデータ) (2024-02-16T23:36:43Z) - nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales [65.01417261415833]
我々は,最大更新パラメトリゼーション(muP)がスケーリング法則の正確な適合を可能にするという観測に基づいて,事前学習損失を予測する手法を提案する。
トレーニング前コストの約14%で、52Bまでのモデルの損失を正確に予測できる。
NanoLMのゴールは、限られた資源を持つ研究者が大きなモデルで有意義な結論に達することを可能にすることです。
論文 参考訳(メタデータ) (2023-04-14T00:45:01Z) - Real-time Human Detection Model for Edge Devices [0.0]
畳み込みニューラルネットワーク(CNN)は、検出と分類タスクにおいて、従来の特徴抽出と機械学習モデルを置き換える。
最近、リアルタイムタスクのために軽量CNNモデルが導入されている。
本稿では,Raspberry Piのような限られたエッジデバイスに適合するCNNベースの軽量モデルを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:42:17Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
本稿では,高密度モデルの事前学習を伴わない新規なGrow-and-prune(GaP)手法を提案する。
実験により、そのようなモデルは様々なタスクにおいて80%の間隔で高度に最適化された高密度モデルの品質に適合または打ち勝つことができることが示された。
論文 参考訳(メタデータ) (2021-06-18T01:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。