論文の概要: Background Semantics Matter: Cross-Task Feature Exchange Network for Clustered Infrared Small Target Detection With Sky-Annotated Dataset
- arxiv url: http://arxiv.org/abs/2407.20078v2
- Date: Sat, 2 Nov 2024 15:58:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 14:16:02.163568
- Title: Background Semantics Matter: Cross-Task Feature Exchange Network for Clustered Infrared Small Target Detection With Sky-Annotated Dataset
- Title(参考訳): 背景意味論:スカイアノテートデータセットを用いたクラスタ型赤外小ターゲット検出のためのクロスタスク特徴交換ネットワーク
- Authors: Mengxuan Xiao, Qun Dai, Yiming Zhu, Kehua Guo, Huan Wang, Xiangbo Shu, Jian Yang, Yimian Dai,
- Abstract要約: 赤外線小目標検出は、固有の目標特徴の不足と、類似した背景散乱体の存在により、固有の課題を生じさせる。
タスククラスタリングされた赤外線小ターゲット検出を導入し、新しいベンチマークデータセットであるDenseSIRSTを提示する。
本研究では,背景に焦点を絞った単一タスクからマルチタスクアーキテクチャへ,検出パラダイムを変換する背景認識特徴交換ネットワーク(BAFE-Net)を提案する。
- 参考スコア(独自算出の注目度): 35.1537908274777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared small target detection poses unique challenges due to the scarcity of intrinsic target features and the abundance of similar background distractors. We argue that background semantics play a pivotal role in distinguishing visually similar objects for this task. To address this, we introduce a new task--clustered infrared small target detection, and present DenseSIRST, a novel benchmark dataset that provides per-pixel semantic annotations for background regions, enabling the transition from sparse to dense target detection. Leveraging this dataset, we propose the Background-Aware Feature Exchange Network (BAFE-Net), which transforms the detection paradigm from a single task focused on the foreground to a multi-task architecture that jointly performs target detection and background semantic segmentation. BAFE-Net introduces a dynamic cross-task feature hard-exchange mechanism to embed target and background semantics between the two tasks. Furthermore, we propose the Background-Aware Gaussian Copy-Paste (BAG-CP) method, which selectively pastes small targets into sky regions during training, avoiding the creation of false alarm targets in complex non-sky backgrounds. Extensive experiments validate the effectiveness of BAG-CP and BAFE-Net in improving target detection accuracy while reducing false alarms. The DenseSIRST dataset, code, and trained models are available at https://github.com/GrokCV/BAFE-Net.
- Abstract(参考訳): 赤外線小目標検出は、固有の目標特徴の不足と、類似した背景散乱体の存在により、固有の課題を生じさせる。
我々は,背景意味論が視覚的に類似した物体を識別する上で重要な役割を担っていると主張している。
そこで本研究では,新たにタスククラスタリングされた赤外線小ターゲット検出システムDenseSIRSTを紹介し,背景領域に対して画素単位のセマンティックアノテーションを提供するベンチマークデータセットを新たに導入し,スパースから高密度ターゲット検出への移行を可能にする。
このデータセットを応用したBAFE-Net(Back background-Aware Feature Exchange Network)を提案する。このネットワークは,前景に着目した単一タスクから,ターゲット検出とバックグラウンドセマンティックセマンティックセグメンテーションを併用したマルチタスクアーキテクチャへ,検出パラダイムを変換する。
BAFE-Netは2つのタスクの間にターゲットとバックグラウンドのセマンティクスを埋め込む動的クロスタスクのハードチェンジ機構を導入した。
さらに,背景認識型ガウス的コピー・ペースト (BAG-CP) 手法を提案する。
BAG-CPとBAFE-Netは、誤報を低減しつつ、目標検出精度を向上させる効果を実証した。
DenseSIRSTデータセット、コード、トレーニングされたモデルはhttps://github.com/GrokCV/BAFE-Net.comで入手できる。
関連論文リスト
- Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
本研究では,Sparse Differential Directionality prior (SDD)フレームワークを提案する。
我々は、ターゲットの異なる方向特性を活用して、それらを背景と区別する。
さらに、サリエンシ・コヒーレンス・ストラテジーにより、目標検出性をさらに強化する。
近似交互最小化法(PAM)アルゴリズムは,提案したモデルを効率的に解く。
論文 参考訳(メタデータ) (2024-07-22T04:32:43Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
単一フレームの赤外線小目標検出は難しい課題であると考えられている。
ターゲットと背景の極端に不均衡のため、境界ボックスの回帰は赤外線小ターゲットに対して非常に敏感である。
本稿では,これらの問題に対処する機能学習ネットワーク(EFLNet)を提案する。
論文 参考訳(メタデータ) (2023-07-27T09:23:22Z) - Label-Efficient Object Detection via Region Proposal Network
Pre-Training [58.50615557874024]
地域提案ネットワーク(RPN)に効果的な事前学習を提供するための簡単な事前学習タスクを提案する。
RPN事前学習のないマルチステージ検出器と比較して,本手法はダウンストリームタスク性能を継続的に改善することができる。
論文 参考訳(メタデータ) (2022-11-16T16:28:18Z) - A Multi-task Framework for Infrared Small Target Detection and
Segmentation [9.033048310220346]
赤外線小ターゲット検出とセグメンテーションのための新しいエンドツーエンドフレームワークを提案する。
UNetをバックボーンとして、解像度とセマンティック情報を維持するために使用しています。
我々は、赤外線小ターゲット検出とセグメンテーションのためのマルチタスクフレームワークを開発した。
論文 参考訳(メタデータ) (2022-06-14T15:43:34Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - Location-Sensitive Visual Recognition with Cross-IOU Loss [177.86369890708457]
本稿では,オブジェクト検出,インスタンスセグメンテーション,ポーズ推定のための位置感知ネットワーク (LSNet) という統合ソリューションを提案する。
ディープニューラルネットワークをバックボーンとして、LSNetは、ターゲットオブジェクトの形状を一緒に定義するアンカーポイントとランドマークのセットを予測します。
論文 参考訳(メタデータ) (2021-04-11T02:17:14Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z) - TBC-Net: A real-time detector for infrared small target detection using
semantic constraint [18.24737906712967]
深層学習は、小さな目標特徴の学習が困難であるため、赤外線小目標検出にはほとんど使われない。
赤外線小ターゲット検出のための新しい軽量畳み込みニューラルネットワークTBC-Netを提案する。
論文 参考訳(メタデータ) (2019-12-27T05:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。