論文の概要: Background Semantics Matter: Cross-Task Feature Exchange Network for Clustered Infrared Small Target Detection
- arxiv url: http://arxiv.org/abs/2407.20078v3
- Date: Tue, 07 Oct 2025 09:53:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 15:38:19.289809
- Title: Background Semantics Matter: Cross-Task Feature Exchange Network for Clustered Infrared Small Target Detection
- Title(参考訳): 背景意味論:クラスタ化された赤外小ターゲット検出のためのクロスタスク特徴交換ネットワーク
- Authors: Mengxuan Xiao, Yinfei Zhu, Yiming Zhu, Boyang Li, Feifei Zhang, Huan Wang, Meng Cai, Yimian Dai,
- Abstract要約: 赤外線小目標検出は、標的の内在的特徴が限られているため、重要な課題を呈する。
背景意味論は、この文脈で視覚的に類似しているように見えるオブジェクトを区別するために重要である。
DenseSIRSTは、背景領域に対してピクセルごとのセマンティックアノテーションを提供するベンチマークデータセットである。
BAFE-Netは、ターゲット検出と背景セマンティックセグメンテーションに共同で取り組むマルチタスクアーキテクチャである。
- 参考スコア(独自算出の注目度): 22.796713788625294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared small target detection presents significant challenges due to the limited intrinsic features of the target and the overwhelming presence of visually similar background distractors. We contend that background semantics are critical for distinguishing between objects that appear visually similar in this context. To address this challenge, we propose a task, clustered infrared small target detection, and introduce DenseSIRST, a benchmark dataset that provides per-pixel semantic annotations for background regions. This dataset facilitates the shift from sparse to dense target detection. This dataset facilitates the shift from sparse to dense target detection. Building on this resource, we propose the Background-Aware Feature Exchange Network (BAFE-Net), a multi-task architecture that jointly tackles target detection and background semantic segmentation. BAFE-Net incorporates a dynamic cross-task feature hard-exchange mechanism, enabling the effective exchange of target and background semantics between the two tasks. Comprehensive experiments demonstrate that BAFE-Net significantly enhances target detection accuracy while mitigating false alarms. The DenseSIRST dataset, along with the code and trained models, is publicly available at https://github.com/GrokCV/BAFE-Net.
- Abstract(参考訳): 赤外線小目標検出は、標的の内在的特徴が限られており、視覚的に類似した背景障害の存在が圧倒的に多いため、重大な課題を呈する。
背景のセマンティクスは、この文脈で視覚的に類似しているように見えるオブジェクトを区別するために重要であると我々は主張する。
この課題に対処するため、我々は、クラスタ化された赤外線小ターゲット検出タスクを提案し、背景領域に対してピクセルごとのセマンティックアノテーションを提供するベンチマークデータセットであるDenseSIRSTを紹介した。
このデータセットはスパースから密度の高いターゲット検出への移行を容易にする。
このデータセットはスパースから密度の高いターゲット検出への移行を容易にする。
このリソースを基盤として,ターゲット検出と背景セマンティックセグメンテーションを併用したマルチタスクアーキテクチャであるバックグラウンド・アウェア・フィーチャー・エクスチェンジ・ネットワーク(BAFE-Net)を提案する。
BAFE-Netは動的クロスタスク機能を持つハードチェンジ機構を導入し、2つのタスク間でターゲットとバックグラウンドのセマンティクスを効果的に交換できる。
包括的な実験により、BAFE-Netは誤報を緩和しながらターゲット検出精度を大幅に向上することが示された。
DenseSIRSTデータセットは、コードとトレーニングされたモデルとともに、https://github.com/GrokCV/BAFE-Net.comで公開されている。
関連論文リスト
- It's Not the Target, It's the Background: Rethinking Infrared Small Target Detection via Deep Patch-Free Low-Rank Representations [5.326302374594885]
本稿では、LRRNetと呼ばれる新しいエンドツーエンドIRSTDフレームワークを提案する。
乱れシーンの物理的圧縮性に着想を得て,本手法は圧縮・再構成・減算パラダイムを採用する。
複数の公開データセットの実験により、LRRNetは検出精度、堅牢性、計算効率の点で38の最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2025-06-12T07:24:45Z) - Toward Realistic Camouflaged Object Detection: Benchmarks and Method [11.279532701331647]
カモフラージュされたオブジェクト検出(COD)は、主にセマンティックまたはインスタンスセグメンテーション手法に依存している。
カモフラージュ検出のためのCAFR(camouflage-aware feature refinement)戦略を提案する。
CAFRは、大型モデルの以前の知識の中で、現在の物体の明確な認識を十分に利用し、背景と前景の区別を深く理解する検出器を支援する。
論文 参考訳(メタデータ) (2025-01-13T13:04:00Z) - Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
本研究では,Sparse Differential Directionality prior (SDD)フレームワークを提案する。
我々は、ターゲットの異なる方向特性を活用して、それらを背景と区別する。
さらに、サリエンシ・コヒーレンス・ストラテジーにより、目標検出性をさらに強化する。
近似交互最小化法(PAM)アルゴリズムは,提案したモデルを効率的に解く。
論文 参考訳(メタデータ) (2024-07-22T04:32:43Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
単一フレームの赤外線小目標検出は難しい課題であると考えられている。
ターゲットと背景の極端に不均衡のため、境界ボックスの回帰は赤外線小ターゲットに対して非常に敏感である。
本稿では,これらの問題に対処する機能学習ネットワーク(EFLNet)を提案する。
論文 参考訳(メタデータ) (2023-07-27T09:23:22Z) - Label-Efficient Object Detection via Region Proposal Network
Pre-Training [58.50615557874024]
地域提案ネットワーク(RPN)に効果的な事前学習を提供するための簡単な事前学習タスクを提案する。
RPN事前学習のないマルチステージ検出器と比較して,本手法はダウンストリームタスク性能を継続的に改善することができる。
論文 参考訳(メタデータ) (2022-11-16T16:28:18Z) - A Multi-task Framework for Infrared Small Target Detection and
Segmentation [9.033048310220346]
赤外線小ターゲット検出とセグメンテーションのための新しいエンドツーエンドフレームワークを提案する。
UNetをバックボーンとして、解像度とセマンティック情報を維持するために使用しています。
我々は、赤外線小ターゲット検出とセグメンテーションのためのマルチタスクフレームワークを開発した。
論文 参考訳(メタデータ) (2022-06-14T15:43:34Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - Location-Sensitive Visual Recognition with Cross-IOU Loss [177.86369890708457]
本稿では,オブジェクト検出,インスタンスセグメンテーション,ポーズ推定のための位置感知ネットワーク (LSNet) という統合ソリューションを提案する。
ディープニューラルネットワークをバックボーンとして、LSNetは、ターゲットオブジェクトの形状を一緒に定義するアンカーポイントとランドマークのセットを予測します。
論文 参考訳(メタデータ) (2021-04-11T02:17:14Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z) - TBC-Net: A real-time detector for infrared small target detection using
semantic constraint [18.24737906712967]
深層学習は、小さな目標特徴の学習が困難であるため、赤外線小目標検出にはほとんど使われない。
赤外線小ターゲット検出のための新しい軽量畳み込みニューラルネットワークTBC-Netを提案する。
論文 参考訳(メタデータ) (2019-12-27T05:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。