論文の概要: Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired Neural Networks for the 3D microstructure evolution of materials
- arxiv url: http://arxiv.org/abs/2407.20126v1
- Date: Mon, 29 Jul 2024 15:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:05:24.799790
- Title: Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired Neural Networks for the 3D microstructure evolution of materials
- Title(参考訳): 物理にインスパイアされたニューラルネットワークの極端時間外挿能力と熱力学的整合性
- Authors: Daniele Lanzoni, Andrea Fantasia, Roberto Bergamaschini, Olivier Pierre-Louis, Francesco Montalenti,
- Abstract要約: 畳み込みリカレントニューラルネットワーク(CRNN)は,3次元のスピノーダル分解過程の進化を再現するために訓練される。
特殊で物理学に触発されたアーキテクチャは、予測された進化と基礎的な真実とを密に一致させることが証明されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Convolutional Recurrent Neural Network (CRNN) is trained to reproduce the evolution of the spinodal decomposition process in three dimensions as described by the Cahn-Hilliard equation. A specialized, physics-inspired architecture is proven to provide close accordance between the predicted evolutions and the ground truth ones obtained via conventional integration schemes. The method can closely reproduce the evolution of microstructures not represented in the training set at a fraction of the computational costs. Extremely long-time extrapolation capabilities are achieved, up to reaching the theoretically expected equilibrium state of the system, despite the training set containing only relatively-short, initial phases of the evolution. Quantitative accordance with the decay rate of the Free energy is also demonstrated up to late coarsening stages, providing an example of a data-driven, physically consistent and high-accuracy Machine Learning method for the long timescale simulation of materials.
- Abstract(参考訳): 畳み込みリカレントニューラルネットワーク(CRNN)は、コーン・ヒリアード方程式によって記述された3次元のスピノーダル分解過程の進化を再現するために訓練される。
特殊で物理に触発されたアーキテクチャは、予測された進化と従来の統合スキームを通して得られる基底真理とを密に一致させることが証明されている。
この方法では、計算コストのごく一部でトレーニングセットに表現されていない微細構造の進化を忠実に再現することができる。
比較的短い初期段階のみを含むトレーニングセットにもかかわらず、システムの理論的に期待される平衡状態に達するまで、極端に長時間の外挿能力が達成される。
自由エネルギーの崩壊速度に応じた定量化は、データ駆動型、物理的に整合性があり、高精度な機械学習手法の長い時間スケールの材料シミュレーションの例として、遅い粗大化段階まで示される。
関連論文リスト
- Geometric Trajectory Diffusion Models [58.853975433383326]
生成モデルは3次元幾何学システムの生成において大きな可能性を示してきた。
既存のアプローチは静的構造のみで動作し、物理系は常に自然界において動的であるという事実を無視する。
本研究では3次元軌跡の時間分布をモデル化する最初の拡散モデルである幾何軌道拡散モデル(GeoTDM)を提案する。
論文 参考訳(メタデータ) (2024-10-16T20:36:41Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Real-time chiral dynamics at finite temperature from quantum simulation [0.0]
本研究では, (1+1)-次元QEDにおけるキラル磁気効果(CME)の有限温度におけるリアルタイムダイナミクスについて検討する。
熱状態の研究には量子想像時間進化法(QITE)アルゴリズムを用い,実時間進化には鈴木・トロッター分解法を用いる。
論文 参考訳(メタデータ) (2024-07-31T10:10:42Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
集合ニュートリノ振動は、天体物理学的な設定においてレプトンのフレーバーを輸送する上で重要な役割を担っている。
高速振動を呈する単純多角ジオメトリーにおける平衡外フレーバーのフルダイナミクスについて検討した。
我々はこれらの高速集団モードが同じ動的相転移によって生成されることを示す。
論文 参考訳(メタデータ) (2022-03-05T17:00:06Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
構造環境下で進化する初期最大絡み合い状態における運転の役割について検討した。
この知識は、散逸動力学の下で量子特性を最もよく保持する物理装置の探索に役立つ。
論文 参考訳(メタデータ) (2021-03-18T21:11:37Z) - SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
Interatomic Potentials [0.17590081165362778]
NequIPは分子動力学シミュレーションのためのab-initio計算から原子間電位を学習するためのSE(3)等価ニューラルネットワークアプローチである。
この方法は、顕著なデータ効率を示しながら、様々な分子や材料の挑戦的な集合に対して最先端の精度を達成する。
論文 参考訳(メタデータ) (2021-01-08T18:49:10Z) - Uncertainty estimation for molecular dynamics and sampling [0.0]
機械学習モデルは、時間を要する電子構造計算をサイドステップする非常に効果的な戦略として登場した。
モデルのトレーニング中に含まれる有限個の参照構造から導かれる誤差を推定することは非常に重要である。
本報告では, 水や液体ガリウムほど多様な構造特性と熱力学特性, システムについて述べる。
論文 参考訳(メタデータ) (2020-11-10T00:07:50Z) - Sobolev training of thermodynamic-informed neural networks for smoothed
elasto-plasticity models with level set hardening [0.0]
本研究では, 可視成分を用いた平滑な弾塑性モデルの学習を目的としたディープラーニングフレームワークを提案する。
収率関数を進化レベル集合として再キャストすることにより、ハミルトン・ヤコビ方程式の解を予測する機械学習手法を導入する。
論文 参考訳(メタデータ) (2020-10-15T22:43:32Z) - Molecular Latent Space Simulators [8.274472944075713]
本研究では、連続的な全原子シミュレーション軌道の運動モデルを学ぶための潜在空間シミュレータ(LSS)を提案する。
Trpタンパク質を応用して, 新規な超長尺合成折りたたみ路を創出する手法を実証する。
論文 参考訳(メタデータ) (2020-07-01T20:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。