EEGMamba: Bidirectional State Space Model with Mixture of Experts for EEG Multi-task Classification
- URL: http://arxiv.org/abs/2407.20254v2
- Date: Sun, 6 Oct 2024 12:02:35 GMT
- Title: EEGMamba: Bidirectional State Space Model with Mixture of Experts for EEG Multi-task Classification
- Authors: Yiyu Gui, MingZhi Chen, Yuqi Su, Guibo Luo, Yuchao Yang,
- Abstract summary: We introduce EEGMamba, the first universal EEG classification network to truly implement multi-task learning for EEG applications.
EEGMamba seamlessly integrates the Spatio-Temporal-Adaptive (ST- adaptive) module, bidirectional Mamba, and Mixture of Experts (MoE) into a unified framework.
We evaluate our model on eight publicly available EEG datasets, and the experimental results demonstrate its superior performance in four types of tasks.
- Score: 1.4004287903552533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, with the development of deep learning, electroencephalogram (EEG) classification networks have achieved certain progress. Transformer-based models can perform well in capturing long-term dependencies in EEG signals. However, their quadratic computational complexity poses a substantial computational challenge. Moreover, most EEG classification models are only suitable for single tasks and struggle with generalization across different tasks, particularly when faced with variations in signal length and channel count. In this paper, we introduce EEGMamba, the first universal EEG classification network to truly implement multi-task learning for EEG applications. EEGMamba seamlessly integrates the Spatio-Temporal-Adaptive (ST-Adaptive) module, bidirectional Mamba, and Mixture of Experts (MoE) into a unified framework. The proposed ST-Adaptive module performs unified feature extraction on EEG signals of different lengths and channel counts through spatial-adaptive convolution and incorporates a class token to achieve temporal-adaptability. Moreover, we design a bidirectional Mamba particularly suitable for EEG signals for further feature extraction, balancing high accuracy, fast inference speed, and efficient memory-usage in processing long EEG signals. To enhance the processing of EEG data across multiple tasks, we introduce task-aware MoE with a universal expert, effectively capturing both differences and commonalities among EEG data from different tasks. We evaluate our model on eight publicly available EEG datasets, and the experimental results demonstrate its superior performance in four types of tasks: seizure detection, emotion recognition, sleep stage classification, and motor imagery. The code is set to be released soon.
Related papers
- EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training [9.57946371147345]
EEGPT is the first generalist EEG foundation model designed to address these challenges.
First, we propose an electrode-wise modeling strategy that treats each electrode as a fundamental unit.
Second, we develop the first autoregressive EEG pre-trained model.
Third, we introduce a multi-task transfer learning paradigm using a learnable electrode graph network.
arXiv Detail & Related papers (2024-10-14T12:17:54Z) - Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
We propose a novel decoding architecture network with a dual-branch temporal-spectral-spatial transformer (Dual-TSST)
Our proposed Dual-TSST performs superiorly in various tasks, which achieves the promising EEG classification performance of average accuracy of 80.67%.
This study provides a new approach to high-performance EEG decoding, and has great potential for future CNN-Transformer based applications.
arXiv Detail & Related papers (2024-09-05T05:08:43Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
We propose a novel Joint Contrastive learning framework with Feature Alignment to address cross-corpus EEG-based emotion recognition.
In the pre-training stage, a joint domain contrastive learning strategy is introduced to characterize generalizable time-frequency representations of EEG signals.
In the fine-tuning stage, JCFA is refined in conjunction with downstream tasks, where the structural connections among brain electrodes are considered.
arXiv Detail & Related papers (2024-04-15T08:21:17Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - vEEGNet: learning latent representations to reconstruct EEG raw data via
variational autoencoders [3.031375888004876]
We propose vEEGNet, a DL architecture with two modules, i.e., an unsupervised module based on variational autoencoders to extract a latent representation of the data, and a supervised module based on a feed-forward neural network to classify different movements.
We show state-of-the-art classification performance, and the ability to reconstruct both low-frequency and middle-range components of the raw EEG.
arXiv Detail & Related papers (2023-11-16T19:24:40Z) - CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
A key aim in EEG analysis is to extract the underlying neural activation (content) as well as to account for the individual subject variability (style)
Inspired by recent advancements in voice conversion technologies, we propose a novel contrastive split-latent permutation autoencoder (CSLP-AE) framework that directly optimize for EEG conversion.
arXiv Detail & Related papers (2023-11-13T22:46:43Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - EEGMatch: Learning with Incomplete Labels for Semi-Supervised EEG-based Cross-Subject Emotion Recognition [7.1695247553867345]
We propose a novel semi-supervised learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data.
Extensive experiments are conducted on two benchmark databases (SEED and SEED-IV)
arXiv Detail & Related papers (2023-03-27T12:02:33Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.