論文の概要: Making LLMs Work for Enterprise Data Tasks
- arxiv url: http://arxiv.org/abs/2407.20256v1
- Date: Mon, 22 Jul 2024 21:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 00:46:38.909544
- Title: Making LLMs Work for Enterprise Data Tasks
- Title(参考訳): エンタープライズデータタスクでLLMを動作させる
- Authors: Çağatay Demiralp, Fabian Wenz, Peter Baile Chen, Moe Kayali, Nesime Tatbul, Michael Stonebraker,
- Abstract要約: 大規模言語モデル(LLM)は、プライベートデータエコシステムにおけるエンタープライズデータベーステーブルについてほとんど知らない。
LLMのパフォーマンスはトレーニングデータと結びついているので、エンタープライズデータベースの管理と分析タスクを改善する上で、いかに有用かが重要な疑問である。
- 参考スコア(独自算出の注目度): 4.233865241818131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) know little about enterprise database tables in the private data ecosystem, which substantially differ from web text in structure and content. As LLMs' performance is tied to their training data, a crucial question is how useful they can be in improving enterprise database management and analysis tasks. To address this, we contribute experimental results on LLMs' performance for text-to-SQL and semantic column-type detection tasks on enterprise datasets. The performance of LLMs on enterprise data is significantly lower than on benchmark datasets commonly used. Informed by our findings and feedback from industry practitioners, we identify three fundamental challenges -- latency, cost, and quality -- and propose potential solutions to use LLMs in enterprise data workflows effectively.
- Abstract(参考訳): 大規模言語モデル(LLM)は、プライベートデータエコシステムにおけるエンタープライズデータベーステーブルについてはほとんど知らない。
LLMのパフォーマンスはトレーニングデータと結びついているので、エンタープライズデータベースの管理と分析タスクを改善する上で、いかに有用かが重要な疑問である。
そこで本研究では,エンタープライズデータセット上でのテキスト・トゥ・SQLとセマンティック・カラム型検出タスクにおけるLLMの性能に関する実験結果について報告する。
企業データにおけるLCMの性能は、一般的なベンチマークデータセットよりも著しく低い。
業界実践者の発見とフィードバックにより、レイテンシ、コスト、品質の3つの根本的な課題を特定し、企業データワークフローにLLMを効果的に使用するための潜在的なソリューションを提案します。
関連論文リスト
- Tackling prediction tasks in relational databases with LLMs [1.8434042562191815]
この研究は、大規模言語モデル(LLM)が関係データベース上で満足な結果を得ることができないという概念に対処する。
最近導入された RelBench ベンチマークを用いて,LLM の簡単な適用さえも,これらのタスクにおける競合性能を実現することを実証した。
論文 参考訳(メタデータ) (2024-11-18T18:48:13Z) - Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models [79.65071553905021]
所望のデータセットの特徴を考慮したデータ生成手法であるデータアドバイザを提案する。
Data Advisorは生成されたデータの状態を監視し、現在のデータセットの弱点を特定し、データ生成の次のイテレーションをアドバイスする。
論文 参考訳(メタデータ) (2024-10-07T17:59:58Z) - BEAVER: An Enterprise Benchmark for Text-to-SQL [6.3900786001871195]
既存のテキストから生成するベンチマークは、Webから利用可能な表を使って構築されている。
本稿では,企業データウェアハウスデータを含むベンチマークに対して,既製のLCMを適用する。
以下に示すように、パフォーマンスの悪い理由は、主に3つの特徴による。
論文 参考訳(メタデータ) (2024-09-03T16:37:45Z) - Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
知識集約的なタスクを達成するエージェントとしてLLMを使用する複合AIシステム(CAS)は、データベースやAIコミュニティにおいて大きな関心を集めている。
マルチモーダルデータソースのサイロは、そのタスクを達成するための適切なデータソースを特定するのを困難にしている。
我々はエンタープライズデータプラットフォームの複雑さをモデル化したベンチマークであるCMDBenchを提案する。
論文 参考訳(メタデータ) (2024-06-02T01:10:41Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - Benchmarking the Text-to-SQL Capability of Large Language Models: A
Comprehensive Evaluation [33.41556606816004]
大規模言語モデル(LLM)は、テキストからタスクへ進むための強力なツールとして登場した。
最適なプロンプトテンプレートと設計フレームワークについてはまだ合意が得られていない。
既存のベンチマークでは、テキスト・ツー・プロセスの様々なサブタスクにまたがるLCMのパフォーマンスが不十分である。
論文 参考訳(メタデータ) (2024-03-05T13:23:48Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。