論文の概要: Exploring the Plausibility of Hate and Counter Speech Detectors with Explainable AI
- arxiv url: http://arxiv.org/abs/2407.20274v1
- Date: Thu, 25 Jul 2024 10:17:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 19:18:14.293249
- Title: Exploring the Plausibility of Hate and Counter Speech Detectors with Explainable AI
- Title(参考訳): 説明可能なAIを用いたヘイト・カウンタ音声検出器の可視性の検討
- Authors: Adrian Jaques Böck, Djordje Slijepčević, Matthias Zeppelzauer,
- Abstract要約: グラデーションベース,摂動ベース,注意ベース,プロトタイプベースという4つの異なる説明可能性アプローチを比較した。
その結果,摂動に基づく説明可能性が最も優れており,次に勾配に基づく説明可能性,注意に基づく説明可能性を示す。
- 参考スコア(独自算出の注目度): 0.7317046947172644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we investigate the explainability of transformer models and their plausibility for hate speech and counter speech detection. We compare representatives of four different explainability approaches, i.e., gradient-based, perturbation-based, attention-based, and prototype-based approaches, and analyze them quantitatively with an ablation study and qualitatively in a user study. Results show that perturbation-based explainability performs best, followed by gradient-based and attention-based explainability. Prototypebased experiments did not yield useful results. Overall, we observe that explainability strongly supports the users in better understanding the model predictions.
- Abstract(参考訳): 本稿では,トランスモデルの説明可能性とヘイトスピーチと対向音声検出に対する妥当性について検討する。
本研究では, 勾配に基づく, 摂動に基づく, 注意に基づく, およびプロトタイプに基づく4つの異なる説明可能性アプローチの代表者を比較し, ユーザスタディにおいて, アブレーション研究と定性的にそれらを定量的に分析する。
その結果,摂動に基づく説明可能性が最も優れており,次に勾配に基づく説明可能性,注意に基づく説明可能性を示す。
原型に基づく実験では有用な結果が得られなかった。
全体として、モデルの予測をよりよく理解するために、説明可能性がユーザを強く支えていることを観察する。
関連論文リスト
- Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - CNN-based explanation ensembling for dataset, representation and explanations evaluation [1.1060425537315088]
畳み込みモデルを用いた深層分類モデルによる説明文の要約の可能性について検討する。
実験と分析を通じて、モデル行動のより一貫性と信頼性のあるパターンを明らかにするために、説明を組み合わせることの意味を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-04-16T08:39:29Z) - Predictability and Comprehensibility in Post-Hoc XAI Methods: A
User-Centered Analysis [6.606409729669314]
ポストホック説明可能性法は、ブラックボックス機械学習モデルの予測を明らかにすることを目的としている。
我々は、LIMEとSHAPの2つの広く使われているツールにおいて、理解性と予測可能性を評価するために、ユーザスタディを実施している。
モデル決定境界付近のサンプルに対して説明を行うと,SHAPの理解度が大幅に低下することがわかった。
論文 参考訳(メタデータ) (2023-09-21T11:54:20Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Counterfactuals of Counterfactuals: a back-translation-inspired approach
to analyse counterfactual editors [3.4253416336476246]
我々は、反事実的、対照的な説明の分析に焦点をあてる。
本稿では,新しい逆翻訳に基づく評価手法を提案する。
本研究では, 予測モデルと説明モデルの両方の振る舞いについて, 反事実を反復的に説明者に与えることで, 価値ある洞察を得ることができることを示す。
論文 参考訳(メタデータ) (2023-05-26T16:04:28Z) - A Song of (Dis)agreement: Evaluating the Evaluation of Explainable
Artificial Intelligence in Natural Language Processing [7.527234046228323]
我々は、注意に基づく説明のための評価指標としてランク相関を用いるのをやめるべきであると主張している。
注意に基づく説明は,最近の特徴帰属法と強く相関しないことがわかった。
論文 参考訳(メタデータ) (2022-05-09T21:07:39Z) - Example-based Explanations with Adversarial Attacks for Respiratory
Sound Analysis [15.983890739091159]
我々は、代表データ(プロトタイプ)と外れ値(批判)の両方を選択する統一的な例に基づく説明法を開発した。
特に、反復的高速勾配符号法を用いて、データインスタンスの説明スペクトルを生成するために、敵攻撃の新たな応用を提案する。
論文 参考訳(メタデータ) (2022-03-30T08:28:48Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
我々は,試行錯誤の予測に例ベースの説明を与えることのできる,プロトタイプベースの学生ネットワークのより広範な採用を論じる。
類似カーネル以外のプロトタイプベースのネットワークは,分類精度を損なうことなく,有意義な説明と有望な外乱検出結果が得られることを示す。
論文 参考訳(メタデータ) (2020-11-11T05:58:17Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。