MLtoGAI: Semantic Web based with Machine Learning for Enhanced Disease Prediction and Personalized Recommendations using Generative AI
- URL: http://arxiv.org/abs/2407.20284v1
- Date: Fri, 26 Jul 2024 06:32:06 GMT
- Title: MLtoGAI: Semantic Web based with Machine Learning for Enhanced Disease Prediction and Personalized Recommendations using Generative AI
- Authors: Shyam Dongre, Ritesh Chandra, Sonali Agarwal,
- Abstract summary: This research introduces MLtoGAI, which integrates Semantic Web technology with Machine Learning (ML) to enhance disease prediction.
By leveraging semantic technology and explainable AI, the system enhances the accuracy of disease prediction and ensures that the recommendations are relevant and easily understood by individual patients.
- Score: 0.929965561686354
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In modern healthcare, addressing the complexities of accurate disease prediction and personalized recommendations is both crucial and challenging. This research introduces MLtoGAI, which integrates Semantic Web technology with Machine Learning (ML) to enhance disease prediction and offer user-friendly explanations through ChatGPT. The system comprises three key components: a reusable disease ontology that incorporates detailed knowledge about various diseases, a diagnostic classification model that uses patient symptoms to detect specific diseases accurately, and the integration of Semantic Web Rule Language (SWRL) with ontology and ChatGPT to generate clear, personalized health advice. This approach significantly improves prediction accuracy and ensures results that are easy to understand, addressing the complexity of diseases and diverse symptoms. The MLtoGAI system demonstrates substantial advancements in accuracy and user satisfaction, contributing to developing more intelligent and accessible healthcare solutions. This innovative approach combines the strengths of ML algorithms with the ability to provide transparent, human-understandable explanations through ChatGPT, achieving significant improvements in prediction accuracy and user comprehension. By leveraging semantic technology and explainable AI, the system enhances the accuracy of disease prediction and ensures that the recommendations are relevant and easily understood by individual patients. Our research highlights the potential of integrating advanced technologies to overcome existing challenges in medical diagnostics, paving the way for future developments in intelligent healthcare systems. Additionally, the system is validated using 200 synthetic patient data records, ensuring robust performance and reliability.
Related papers
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Easydiagnos: a framework for accurate feature selection for automatic diagnosis in smart healthcare [0.3749861135832073]
This research presents an innovative algorithmic method using the Adaptive Feature Evaluator (AFE) algorithm.
AFE improves feature selection in healthcare datasets and overcomes problems.
Results underscore the transformative potential of AFE in smart healthcare, enabling personalized and transparent patient care.
arXiv Detail & Related papers (2024-10-01T03:28:56Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions.
These advancements also introduce substantial ethical and fairness challenges.
These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups.
arXiv Detail & Related papers (2024-07-29T02:39:17Z) - Health-LLM: Personalized Retrieval-Augmented Disease Prediction System [43.91623010448573]
We propose an innovative framework, Heath-LLM, which combines large-scale feature extraction and medical knowledge trade-off scoring.
Compared to traditional health management applications, our system has three main advantages.
arXiv Detail & Related papers (2024-02-01T16:40:32Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics.
The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics.
arXiv Detail & Related papers (2023-10-25T20:28:22Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.