Easydiagnos: a framework for accurate feature selection for automatic diagnosis in smart healthcare
- URL: http://arxiv.org/abs/2410.00366v1
- Date: Tue, 1 Oct 2024 03:28:56 GMT
- Title: Easydiagnos: a framework for accurate feature selection for automatic diagnosis in smart healthcare
- Authors: Prasenjit Maji, Amit Kumar Mondal, Hemanta Kumar Mondal, Saraju P. Mohanty,
- Abstract summary: This research presents an innovative algorithmic method using the Adaptive Feature Evaluator (AFE) algorithm.
AFE improves feature selection in healthcare datasets and overcomes problems.
Results underscore the transformative potential of AFE in smart healthcare, enabling personalized and transparent patient care.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancements in artificial intelligence (AI) have revolutionized smart healthcare, driving innovations in wearable technologies, continuous monitoring devices, and intelligent diagnostic systems. However, security, explainability, robustness, and performance optimization challenges remain critical barriers to widespread adoption in clinical environments. This research presents an innovative algorithmic method using the Adaptive Feature Evaluator (AFE) algorithm to improve feature selection in healthcare datasets and overcome problems. AFE integrating Genetic Algorithms (GA), Explainable Artificial Intelligence (XAI), and Permutation Combination Techniques (PCT), the algorithm optimizes Clinical Decision Support Systems (CDSS), thereby enhancing predictive accuracy and interpretability. The proposed method is validated across three diverse healthcare datasets using six distinct machine learning algorithms, demonstrating its robustness and superiority over conventional feature selection techniques. The results underscore the transformative potential of AFE in smart healthcare, enabling personalized and transparent patient care. Notably, the AFE algorithm, when combined with a Multi-layer Perceptron (MLP), achieved an accuracy of up to 98.5%, highlighting its capability to improve clinical decision-making processes in real-world healthcare applications.
Related papers
- AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions.
These advancements also introduce substantial ethical and fairness challenges.
These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups.
arXiv Detail & Related papers (2024-07-29T02:39:17Z) - MLtoGAI: Semantic Web based with Machine Learning for Enhanced Disease Prediction and Personalized Recommendations using Generative AI [0.929965561686354]
This research introduces MLtoGAI, which integrates Semantic Web technology with Machine Learning (ML) to enhance disease prediction.
By leveraging semantic technology and explainable AI, the system enhances the accuracy of disease prediction and ensures that the recommendations are relevant and easily understood by individual patients.
arXiv Detail & Related papers (2024-07-26T06:32:06Z) - Comparative Study of Machine Learning Algorithms in Detecting Cardiovascular Diseases [0.0]
The detection of cardiovascular diseases (CVD) using machine learning techniques represents a significant advancement in medical diagnostics.
This study explores a comparative analysis of various machine learning algorithms, including Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and XGBoost.
The findings highlight the efficacy of ensemble methods and advanced algorithms in providing reliable predictions, thereby offering a comprehensive framework for CVD detection.
arXiv Detail & Related papers (2024-05-27T11:29:54Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
This manuscript presents a methodical examination of the utilization of Artificial Intelligence in the assessment of emotions in texts related to healthcare.
We scrutinize numerous research studies that employ AI to augment sentiment analysis, categorize emotions, and forecast patient outcomes.
There persist challenges, which encompass ensuring the ethical application of AI, safeguarding patient confidentiality, and addressing potential biases in algorithmic procedures.
arXiv Detail & Related papers (2024-03-14T15:58:13Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
We leverage a custom XAI framework, incorporating techniques such as Local Interpretable Model-Agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), and Gradient-weighted Class Activation Mapping (Grad-Cam)
The proposed framework enhances the effectiveness of strategic healthcare methods and aims to instill trust and promote understanding in AI-driven medical applications.
We apply the XAI framework to brain tumor detection as a use case demonstrating accurate and transparent diagnosis.
arXiv Detail & Related papers (2024-03-07T01:08:41Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.