論文の概要: Variational Inference Using Material Point Method
- arxiv url: http://arxiv.org/abs/2407.20287v1
- Date: Fri, 26 Jul 2024 17:19:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 19:18:14.276713
- Title: Variational Inference Using Material Point Method
- Title(参考訳): 材料点法による変分推論
- Authors: Yongchao Huang,
- Abstract要約: MPM-ParVIは変分推論のための勾配に基づく粒子サンプリング法である。
確率モデルのクラスに対する決定論的サンプリングと推論を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A new gradient-based particle sampling method, MPM-ParVI, based on material point method (MPM), is proposed for variational inference. MPM-ParVI simulates the deformation of a deformable body (e.g. a solid or fluid) under external effects driven by the target density; transient or steady configuration of the deformable body approximates the target density. The continuum material is modelled as an interacting particle system (IPS) using MPM, each particle carries full physical properties, interacts and evolves following conservation dynamics. This easy-to-implement ParVI method offers deterministic sampling and inference for a class of probabilistic models such as those encountered in Bayesian inference (e.g. intractable densities) and generative modelling (e.g. score-based).
- Abstract(参考訳): 物質点法 (MPM) に基づく新しい勾配型粒子サンプリング法 MPM-ParVI を提案する。
MPM-ParVIは、対象密度によって駆動される外部効果の下で変形可能な物体(例えば固体または流体)の変形をシミュレートする。
連続体は、MPMを用いた相互作用粒子系(IPS)としてモデル化され、各粒子は完全な物理的性質を持ち、保存力学に従って相互作用し、進化する。
この実装が容易なParVI法は、ベイズ的推論(例えば、抽出可能な密度)や生成的モデリング(例えば、スコアベース)に見られるような、確率的モデルのクラスに対する決定論的サンプリングと推論を提供する。
関連論文リスト
- Variational Inference via Smoothed Particle Hydrodynamics [0.0]
滑らかな粒子流体力学に基づく新しい変分推論法を提案する。
高速で、柔軟で、スケーラブルで、決定論的なサンプリングと、確率モデルのクラスに対する推論を提供する。
論文 参考訳(メタデータ) (2024-07-12T11:38:41Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Electrostatics-based particle sampling and approximate inference [0.0]
静電気学とニュートン力学の原理に基づく新しい粒子に基づくサンプリングおよび近似推論法が導入された。
より一般的な推論問題において、離散時間離散空間のアルゴリズム設計が使用される。
論文 参考訳(メタデータ) (2024-06-28T16:53:06Z) - Understanding Diffusion Models by Feynman's Path Integral [2.4373900721120285]
ファインマン積分経路を用いた拡散モデルの新しい定式化を導入する。
この定式化はスコアベース生成モデルの包括的記述を提供する。
また、後方微分方程式と損失関数の導出を示す。
論文 参考訳(メタデータ) (2024-03-17T16:24:29Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
モーフィファイド相互作用エネルギー降下(MIED)と呼ばれる新しい最適化に基づくサンプリング手法を提案する。
MIEDは、モル化相互作用エネルギー(MIE)と呼ばれる確率測度に関する新しいクラスのエネルギーを最小化する
我々は,制約のないサンプリング問題に対して,我々のアルゴリズムがSVGDのような既存の粒子ベースアルゴリズムと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-10-24T16:54:18Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
エネルギーベースモデルの最大学習確率を一般化するために,擬球面コントラスト分散(PS-CD)を提案する。
PS-CDは難解な分割関数を避け、学習目的の一般化されたファミリーを提供する。
論文 参考訳(メタデータ) (2021-11-01T09:17:15Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
分子動力学データから最適線形ペリダイナミックソリッドモデルを抽出する学習フレームワークを提案する。
我々は,符号変化の影響関数を持つ離散化LPSモデルに対して,十分な適切な正当性条件を提供する。
このフレームワークは、結果のモデルが数学的に適切であり、物理的に一貫したものであり、トレーニング中に使用するものと異なる設定によく当てはまることを保証します。
論文 参考訳(メタデータ) (2021-08-04T07:07:47Z) - Learning Equivariant Energy Based Models with Equivariant Stein
Variational Gradient Descent [80.73580820014242]
本稿では,確率モデルに対称性を組み込むことにより,確率密度の効率的なサンプリングと学習の問題に焦点をあてる。
まず、等変シュタイン変分勾配Descentアルゴリズムを導入する。これは、対称性を持つ密度からサンプリングするスタインの同一性に基づく同変サンプリング法である。
我々はエネルギーベースモデルのトレーニングを改善し、スケールアップする新しい方法を提案する。
論文 参考訳(メタデータ) (2021-06-15T01:35:17Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFTは原子周辺の電子電荷密度を予測するためのディープラーニングモデルである。
モデルの精度とスケーラビリティは、分子、固体、液体に対して実証される。
論文 参考訳(メタデータ) (2020-11-04T16:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。