Variational Inference Using Material Point Method
- URL: http://arxiv.org/abs/2407.20287v1
- Date: Fri, 26 Jul 2024 17:19:50 GMT
- Title: Variational Inference Using Material Point Method
- Authors: Yongchao Huang,
- Abstract summary: MPM-ParVI is a gradient-based particle sampling method for variational inference.
It offers deterministic sampling and inference for a class of probabilistic models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A new gradient-based particle sampling method, MPM-ParVI, based on material point method (MPM), is proposed for variational inference. MPM-ParVI simulates the deformation of a deformable body (e.g. a solid or fluid) under external effects driven by the target density; transient or steady configuration of the deformable body approximates the target density. The continuum material is modelled as an interacting particle system (IPS) using MPM, each particle carries full physical properties, interacts and evolves following conservation dynamics. This easy-to-implement ParVI method offers deterministic sampling and inference for a class of probabilistic models such as those encountered in Bayesian inference (e.g. intractable densities) and generative modelling (e.g. score-based).
Related papers
- Variational Inference via Smoothed Particle Hydrodynamics [0.0]
A new variational inference method is proposed, based on smoothed particle hydrodynamics.
It offers fast, flexible, scalable and deterministic sampling and inference for a class of probabilistic models.
arXiv Detail & Related papers (2024-07-12T11:38:41Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Electrostatics-based particle sampling and approximate inference [0.0]
A new particle-based sampling and approximate inference method, based on electrostatics and Newton mechanics principles, is introduced.
A discrete-time, discrete-space algorithmic design is provided for usage in more general inference problems.
arXiv Detail & Related papers (2024-06-28T16:53:06Z) - Understanding Diffusion Models by Feynman's Path Integral [2.4373900721120285]
We introduce a novel formulation of diffusion models using Feynman's integral path.
We find this formulation providing comprehensive descriptions of score-based generative models.
We also demonstrate the derivation of backward differential equations and loss functions.
arXiv Detail & Related papers (2024-03-17T16:24:29Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids.
In this paper, we consider a partially observable scenario known as fluid dynamics grounding.
We propose a differentiable two-stage network named NeuroFluid.
It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities.
arXiv Detail & Related papers (2022-03-03T15:13:29Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
We propose pseudo-spherical contrastive divergence (PS-CD) to generalize maximum learning likelihood of energy-based models.
PS-CD avoids the intractable partition function and provides a generalized family of learning objectives.
arXiv Detail & Related papers (2021-11-01T09:17:15Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z) - Learning Equivariant Energy Based Models with Equivariant Stein
Variational Gradient Descent [80.73580820014242]
We focus on the problem of efficient sampling and learning of probability densities by incorporating symmetries in probabilistic models.
We first introduce Equivariant Stein Variational Gradient Descent algorithm -- an equivariant sampling method based on Stein's identity for sampling from densities with symmetries.
We propose new ways of improving and scaling up training of energy based models.
arXiv Detail & Related papers (2021-06-15T01:35:17Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFT is a deep learning model for predicting the electronic charge density around atoms.
The accuracy and scalability of the model are demonstrated for molecules, solids and liquids.
arXiv Detail & Related papers (2020-11-04T16:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.