Weakly Supervised Intracranial Hemorrhage Segmentation with YOLO and an Uncertainty Rectified Segment Anything Model
- URL: http://arxiv.org/abs/2407.20461v3
- Date: Wed, 4 Sep 2024 03:17:22 GMT
- Title: Weakly Supervised Intracranial Hemorrhage Segmentation with YOLO and an Uncertainty Rectified Segment Anything Model
- Authors: Pascal Spiegler, Amirhossein Rasoulian, Yiming Xiao,
- Abstract summary: Intracranial hemorrhage (ICH) is a life-threatening condition that requires rapid and accurate diagnosis to improve treatment outcomes and patient survival rates.
Recent advancements in supervised deep learning have greatly improved the analysis of medical images.
To mitigate the need for large amounts of expert-prepared segmentation data, we have developed a novel weakly supervised ICH segmentation method.
- Score: 0.5578116134031106
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Intracranial hemorrhage (ICH) is a life-threatening condition that requires rapid and accurate diagnosis to improve treatment outcomes and patient survival rates. Recent advancements in supervised deep learning have greatly improved the analysis of medical images, but often rely on extensive datasets with high-quality annotations, which are costly, time-consuming, and require medical expertise to prepare. To mitigate the need for large amounts of expert-prepared segmentation data, we have developed a novel weakly supervised ICH segmentation method that utilizes the YOLO object detection model and an uncertainty-rectified Segment Anything Model (SAM). In addition, we have proposed a novel point prompt generator for this model to further improve segmentation results with YOLO-predicted bounding box prompts. Our approach achieved a high accuracy of 0.933 and an AUC of 0.796 in ICH detection, along with a mean Dice score of 0.629 for ICH segmentation, outperforming existing weakly supervised and popular supervised (UNet and Swin-UNETR) approaches. Overall, the proposed method provides a robust and accurate alternative to the more commonly used supervised techniques for ICH quantification without requiring refined segmentation ground truths during model training.
Related papers
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Self-Supervised Few-Shot Learning for Ischemic Stroke Lesion
Segmentation [8.668715385199889]
We present a few-shot segmentation approach for ischemic lesion segmentation using only one annotated sample during training.
We exploit color-coded parametric maps generated from Computed Tomography Perfusion scans.
Given a single annotated patient, an average Dice score of 0.58 is achieved for the segmentation of ischemic lesions.
arXiv Detail & Related papers (2023-03-02T15:10:08Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free
Survival using a Full-Scale UNet with Attention [0.8138288420049126]
The MICCAI 2021 HEad and neCK TumOR (HECKTOR) segmentation and outcome prediction challenge creates a platform for comparing segmentation methods.
We trained multiple neural networks for tumor volume segmentation, and these segmentations were ensembled achieving an average Dice Similarity Coefficient of 0.75 in cross-validation.
For prediction of patient progression free survival task, we propose a Cox proportional hazard regression combining clinical, radiomic, and deep learning features.
arXiv Detail & Related papers (2021-11-06T10:28:48Z) - Weakly-Supervised Universal Lesion Segmentation with Regional Level Set
Loss [16.80758525711538]
We present a novel weakly-supervised universal lesion segmentation method based on the High-Resolution Network (HRNet)
AHRNet provides advanced high-resolution deep image features by involving a decoder, dual-attention and scale attention mechanisms.
Our method achieves the best performance on the publicly large-scale DeepLesion dataset and a hold-out test set.
arXiv Detail & Related papers (2021-05-03T23:33:37Z) - Leveraging Deep Representations of Radiology Reports in Survival
Analysis for Predicting Heart Failure Patient Mortality [10.075717786962896]
We present a novel method of using BERT-based hidden layer representations of clinical texts to predict patient survival outcomes.
We show that hidden layers yield notably more accurate predictions than predefined features, outperforming the previous baseline model by 5.7% on average across C-index and time-dependent AUC.
arXiv Detail & Related papers (2021-05-03T16:54:52Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.