論文の概要: Pruning Large Language Models with Semi-Structural Adaptive Sparse Training
- arxiv url: http://arxiv.org/abs/2407.20584v1
- Date: Tue, 30 Jul 2024 06:33:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:09:21.289912
- Title: Pruning Large Language Models with Semi-Structural Adaptive Sparse Training
- Title(参考訳): 半構造適応スパース学習を用いた大規模言語モデルの構築
- Authors: Weiyu Huang, Guohao Jian, Yuezhou Hu, Jun Zhu, Jianfei Chen,
- Abstract要約: 適応スパーストレーナー(AST)と呼ばれる半構造化スパースモデルのための新しいトレーニングパイプラインを提案する。
ASTでは、トレーニング中により優れた宝くじを適応的に選択できる。
本手法は,計算コストを抑えながら,密度モデルとスパースモデルのパフォーマンスギャップを著しく縮小する。
- 参考スコア(独自算出の注目度): 17.381160429641316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based Large Language Models (LLMs) have demonstrated remarkable success across various challenging tasks. However, the deployment of LLMs is hindered by their substantial parameter count and memory consumption. Recently, numerous studies have attempted to compress LLMs by pruning them using training-free methods. However, these pruned models often experience significant performance degradation on complex tasks. To address this issue, we propose a novel training pipeline for semi-structured sparse models, named Adaptive Sparse Trainer (AST). By distilling the knowledge stored in its dense counterpart, we prevent the sparse model from overfitting and ensure a stable training process. Moreover, AST allows the model to adaptively select better lottery tickets (e.g., masks) during training. Additionally, we discovered that adding extra well-initialized parameters can further enhance model performance with only a small increase in memory footprint. Our method significantly narrows the performance gap between dense and sparse models while maintaining limited computational cost. Furthermore, when combined with existing quantization methods, AST can compress language models by up to 16x compared to dense FP32 precision models with minimal performance loss. AST outperforms previous state-of-the-art methods by reducing the zero-shot accuracy gap between dense and semi-structured sparse models to 1.12% across multiple zero-shot tasks on Llama2-7B, using less than 0.4% of the pretraining tokens.
- Abstract(参考訳): Transformer-based Large Language Models (LLM) は、様々な課題において顕著な成功を収めている。
しかし, LLMの展開は, パラメータ数やメモリ消費に支障をきたす。
近年,LLMを無訓練で刈り取ろうとする研究が盛んに行われている。
しかし、これらの刈り取られたモデルは複雑なタスクで顕著なパフォーマンス劣化を経験することが多い。
この問題に対処するため,アダプティブスパーストレーナー (AST) と呼ばれる半構造化スパースモデルの新たなトレーニングパイプラインを提案する。
密封された知識を蒸留することにより、スパースモデルの過度な適合を防止し、安定したトレーニングプロセスを確保する。
さらに、ASTはトレーニング中により優れた宝くじ(例えばマスク)を適応的に選択できる。
さらに,メモリフットプリントをわずかに増加させるだけで,パラメータの追加によりモデル性能がさらに向上することが判明した。
本手法は,計算コストを抑えながら,密度モデルとスパースモデルのパフォーマンスギャップを著しく縮小する。
さらに、既存の量子化法と組み合わせることで、ASTは、性能損失を最小限に抑えた高密度FP32精度モデルと比較して、言語モデルを最大16倍圧縮することができる。
ASTは、Llama2-7B上の複数のゼロショットタスクにおいて、密集したスパースモデルと半構造化されたスパースモデルのゼロショット精度ギャップを1.12%に減らし、事前訓練トークンの0.4%以下で、従来の最先端の手法より優れている。
関連論文リスト
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
LLM(Large Language Models)をスクラッチからトレーニングするには膨大な計算資源が必要であるため、非常に高価である。
モデルスケーリングアップは、より小さなモデルのパラメータを活用してより大きなモデルを作成することで、有望なソリューションを提供する。
深度スケールアップのための新しい学習方法である textbfLESA を提案する。
論文 参考訳(メタデータ) (2025-02-19T14:58:48Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [95.32315448601241]
本稿では,RoSTE (Rotated Straight-Through-Estimator) というアルゴリズムを提案する。
RoSTEは、量子化を意識した微調整(QA-SFT)と適応的な回転戦略を組み合わせることで、アクティベーションアウトリーを減少させる。
その結果, 予測誤差は収束重みの量子化誤差と直接比例し, 最適化された回転構成により効果的に管理できることが判明した。
論文 参考訳(メタデータ) (2025-02-13T06:44:33Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - TRAWL: Tensor Reduced and Approximated Weights for Large Language Models [11.064868044313855]
TRAWL (Tensor Reduced and Approximated Weights for Large Language Models) は、複数の重み行列に対してテンソル分解を適用し、大域的な構造パターンを捉えることでLLMを効果的に分解する手法である。
我々の実験によると、TRAWLは、追加のデータやトレーニング、微調整を必要とせず、ベンチマークデータセットのベースラインモデルよりも最大16%モデル性能を向上させる。
論文 参考訳(メタデータ) (2024-06-25T04:01:32Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks [5.536630285985836]
パラメータ効率のスペシャリティクラフト (PESC) を導入する。
PESCは、Mix-of-experts (MoE)アーキテクチャを使って、密集したモデルをスパースモデルに加工する。
我々の最良スパースモデルは他のスパースモデルよりも優れ、GP3.5に比べて優れた一般性を示す。
論文 参考訳(メタデータ) (2024-01-05T09:58:09Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
我々は,事前訓練された大規模モデルからより小型のLCMを開発するための効果的な方法として構造化プルーニングについて検討した。
提案手法では,(1)階層,頭部,中間および隠蔽次元をエンド・ツー・エンドに除去することで,より大きなモデルを特定のターゲット形状にプルーニングするターゲット構造化プルーニングと,(2)各トレーニングバッチにおけるサンプルデータの構成を,異なるドメイン間での損失に基づいて動的に更新する動的バッチローディングという2つの重要な手法を用いる。
論文 参考訳(メタデータ) (2023-10-10T15:13:30Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - A Fast and Efficient Conditional Learning for Tunable Trade-Off between
Accuracy and Robustness [11.35810118757863]
クリーンかつ逆摂動画像上でのSOTA(State-of-the-art)性能を実現する既存のモデルは、FiLM(Feature-wise linear modulation)層を条件とした畳み込み操作に依存している。
既存のFiLMベースの条件付けの代わりに、付加層を必要としない独特な重み付き学習を行うFLOATアルゴリズムを提案する。
特に、重みテンソルにスケールドノイズを加え、クリーンな性能と対向的な性能のトレードオフを可能にする。
論文 参考訳(メタデータ) (2022-03-28T19:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。