論文の概要: Multi-Purpose Architecture for Fast Reset and Protective Readout of Superconducting Qubits
- arxiv url: http://arxiv.org/abs/2407.21332v1
- Date: Wed, 31 Jul 2024 04:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:47:12.369392
- Title: Multi-Purpose Architecture for Fast Reset and Protective Readout of Superconducting Qubits
- Title(参考訳): 超電導量子ビットの高速リセットと保護読み出しのための多目的アーキテクチャ
- Authors: Jiayu Ding, Yulong Li, He Wang, Guangming Xue, Tang Su, Chenlu Wang, Weijie Sun, Feiyu Li, Yujia Zhang, Yang Gao, Jun Peng, Zhi Hao Jiang, Yang Yu, Haifeng Yu, Fei Yan,
- Abstract要約: 制御および読み出し中に超伝導量子ビットの高速リセットと保護を可能にする新しい多目的アーキテクチャを提案する。
本設計では、2つのオンチップ・ダイプレクサを2つの伝送線路で接続し、高域分岐は、キュービット周波数以上の読み出し共振器を最適に割り当てるためのフラットパスバンドを提供する。
トランスモンの量子ビットを最初の励起状態から基底状態に100nsでリセットし, 残留個体数が2.7%に達することを実証した。
- 参考スコア(独自算出の注目度): 25.833934622405998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to fast reset a qubit state is crucial for quantum information processing. However, to actively reset a qubit requires engineering a pathway to interact with a dissipative bath, which often comes with the cost of reduced qubit protection from the environment. Here, we present a novel multi-purpose architecture that enables fast reset and protection of superconducting qubits during control and readout. In our design, two on-chip diplexers are connected by two transmission lines. The high-pass branch provides a flat passband for convenient allocation of readout resonators above the qubit frequencies, which is preferred for reducing measurement-induced state transitions. In the low-pass branch, we leverage a standing-wave mode below the maximum qubit frequency for a rapid reset. The qubits are located in the common stopband to inhibit dissipation during coherent operations. We demonstrate resetting a transmon qubit from its first excited state to the ground state in 100 ns, achieving a residual population of 2.7%, mostly limited by the thermal effect. The reset time may be further shortened to 27 ns by exploiting the coherent population inversion effect. We further extend the technique to resetting the qubit from its second excited state. Our approach promises scalable implementation of fast reset and qubit protection during control and readout, adding to the toolbox of dissipation engineering.
- Abstract(参考訳): 量子ビット状態の高速リセットは、量子情報処理に不可欠である。
しかし、量子ビットを積極的にリセットするためには、放散浴と相互作用する経路が必要であり、しばしば環境からの量子ビット保護を減らすコストがかかる。
本稿では,超電導量子ビットの制御および読み出し時の高速リセットと保護を可能にする,新しい多目的アーキテクチャを提案する。
本設計では、2つのオンチップダイプレクサを2つの伝送線路で接続する。
高域分岐は、キュービット周波数以上の読み出し共振器を簡便に割り当てるための平坦なパスバンドを提供し、測定誘起状態遷移の低減に好適である。
低域分岐では、最大量子ビット周波数以下の定常波モードを用いて高速リセットを行う。
クビットはコヒーレント操作中の消散を抑制するため、共通のストップバンドに位置している。
トランスモンの量子ビットを最初の励起状態から基底状態に100nsでリセットし, 残留個体数は2.7%で, 主に熱効果によって制限された。
リセット時間は、コヒーレントな集団反転効果を利用して27nsにさらに短縮することができる。
さらに、量子ビットを第2の励起状態からリセットするように拡張する。
当社のアプローチでは,制御および読み出し中における高速リセットとキュービット保護のスケーラブルな実装を約束し,消散工学のツールボックスを付加する。
関連論文リスト
- Fast unconditional reset and leakage reduction in fixed-frequency transmon qubits [5.648269866084686]
量子ビットリセットとリークリダクションの両方を実装可能なプロトコルを示す。
合計して、クビットリセット、リークリセット、カプラリセットの組み合わせは83nsで完了する。
また,本プロトコルは,QECサイクル実行時間を短縮し,量子コンピュータにおけるアルゴリズムの忠実度を向上させる手段を提供する。
論文 参考訳(メタデータ) (2024-09-25T08:57:41Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
超伝導量子ビットは、大帯域読み出し共振器に結合される。
我々は、100 ns 統合時間で 0.25,% の、最先端の2状態読み取りエラーを示す。
提案した結果により,新たなアルゴリズムやプロトコルの性能がさらに向上することが期待されている。
論文 参考訳(メタデータ) (2023-07-15T10:30:10Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
分散量子コンピューティングは、複数のデバイスの計算能力を組み合わせて、個々のデバイスの限界を克服する。
回路切断技術は、古典的な通信を通じて量子計算の分配を可能にする。
量子テレポーテーション(quantum teleportation)は、指数的なショットの増加を伴わない量子計算の分布を可能にする。
非最大エンタングル量子ビット対を利用する新しい回路切断法を提案する。
論文 参考訳(メタデータ) (2023-06-21T08:03:34Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
時間依存ドライブは量子コンピューティングの取り組みにおいて重要な役割を果たす。
シングルキュービット制御、論理演算の絡み合い、およびキュービットの読み出しを可能にする。
クビット・クローキングは、Lled'o, Dassonneville, et alで導入された。
論文 参考訳(メタデータ) (2023-05-01T15:58:25Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
超伝導トランスモン内の2つの量子ビットの保存と制御に高エネルギーレベルを使用することが理論的に可能であることを示す。
追加の量子ビットは、誤り訂正に多くの短命な量子ビットを必要とするアルゴリズムや、量子ビットネットワークに高接続性を持つeffecitveを埋め込むアルゴリズムで使用することができる。
論文 参考訳(メタデータ) (2023-02-28T16:18:00Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
印加された直流電界を用いて、クォービット共鳴から外れた欠陥を調整することにより、クビットコヒーレンスを向上させることができることを示す。
また、超伝導量子プロセッサにおいて局所ゲート電極をどのように実装し、個々の量子ビットの同時コヒーレンス最適化を実現するかについても論じる。
論文 参考訳(メタデータ) (2022-08-02T16:18:30Z) - Moving beyond the transmon: Noise-protected superconducting quantum
circuits [55.49561173538925]
超伝導回路は、高い忠実度で量子情報を保存および処理する機会を提供する。
ノイズ保護デバイスは、計算状態が主に局所的なノイズチャネルから切り離される新しい種類の量子ビットを構成する。
このパースペクティブは、これらの新しい量子ビットの中心にある理論原理をレビューし、最近の実験について述べ、超伝導量子ビットにおける量子情報の堅牢な符号化の可能性を強調している。
論文 参考訳(メタデータ) (2021-06-18T18:00:13Z) - Rapid and Unconditional Parametric Reset Protocol for Tunable
Superconducting Qubits [12.429990467686526]
量子コンピューティングにおける量子ビットの高速かつ高忠実リセット方式について報告する。
トランスモン量子ビットを通してフラックスを変調することにより、量子ビットとその読み出し共振器間のスワップを実現する。
提案手法は, 2次励起状態の劣化を効果的に達成し, (ii) 近傍の量子ビットに対して無視可能な効果を有し, (iii) 量子ビットを反復的な単一光子で絡み合わせる方法を提供する。
論文 参考訳(メタデータ) (2021-03-21T06:22:59Z) - Breaking the trade-off between fast control and long lifetime of a
superconducting qubit [0.2770822269241974]
第2の超伝導量子ビットは制御線に沿って強く結合している。
この第2の量子ビットは、クビットがマイクロ波光子を放出するのを防ぎ、その緩和を抑制する。
我々は,ラビ周波数を減少させることなく,キュービット緩和時間の改善を観察した。
この装置は、大規模な超伝導量子情報プロセッサの実現に役立つ可能性がある。
論文 参考訳(メタデータ) (2020-02-05T04:39:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。