In situ Qubit Frequency Tuning Circuit for Scalable Superconducting Quantum Computing: Scheme and Experiment
- URL: http://arxiv.org/abs/2407.21415v2
- Date: Fri, 27 Dec 2024 03:28:51 GMT
- Title: In situ Qubit Frequency Tuning Circuit for Scalable Superconducting Quantum Computing: Scheme and Experiment
- Authors: Lei Jiang, Yu Xu, Shaowei Li, Zhiguang Yan, Ming Gong, Tao Rong, Chenyin Sun, Tianzuo Sun, Tao Jiang, Hui Deng, Chen Zha, Jin Lin, Fusheng Chen, Qingling Zhu, Yangsen Ye, Hao Rong, Kai Yan, Sirui Cao, Yuan Li, Shaojun Guo, Haoran Qian, Yisen Hu, Yulin Wu, Yuhuai Li, Gang Wu, Xueshen Wang, Shijian Wang, Wenhui Cao, Yeru Wang, Jinjin Li, Cheng-Zhi Peng, Xiaobo Zhu, Jian-Wei Pan,
- Abstract summary: We propose a scalable scheme to tune the qubit frequency by using in situ superconducting circuit.
Our work paves the way for large-scale control of superconducting quantum processor.
- Score: 23.955959205144353
- License:
- Abstract: Frequency tunable qubit plays a significant role for scalable superconducting quantum processors. The state-of-the-art room-temperature electronics for tuning qubit frequency suffers from unscalable limit, such as heating problem, linear growth of control cables, etc. Here we propose a scalable scheme to tune the qubit frequency by using in situ superconducting circuit, which is based on radio frequency superconducting quantum interference device (rf-SQUID). We demonstrate both theoretically and experimentally that the qubit frequency could be modulated by inputting several single pulses into rf-SQUID. Compared with the traditional scheme, our scheme not only solves the heating problem, but also provides the potential to exponentially reduce the number of cables inside the dilute refrigerator and the room-temperature electronics resource for tuning qubit frequency, which is achieved by a time-division-multiplex (TDM) scheme combining rf-SQUID with switch arrays. With such TDM scheme, the number of cables could be reduced from the usual $\sim 3n$ to $\sim \log_2{(3n)} + 1$ for two-dimensional quantum processors comprising $n$ qubits and $\sim 2n$ couplers. Our work paves the way for large-scale control of superconducting quantum processor.
Related papers
- Selective Excitation of Superconducting Qubits with a Shared Control Line through Pulse Shaping [0.0]
We propose a technique that suppresses unwanted excitations by shaping a drive pulse to create null points at non-target qubit frequencies.
These results highlight the SEP technique as a promising tool for enhancing frequency-multiplexed qubit-control.
arXiv Detail & Related papers (2025-01-18T09:37:24Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Superconductor modulation circuits for Qubit control at microwave
frequencies [0.0]
Single Flux Quantum (SFQ) and Adiabatic Quantum Flux Parametron (AQFP) superconductor logic families can reach ultimate performance at cryogenic temperatures.
We have created a superconductor-based on-chip function generator to control qubits.
arXiv Detail & Related papers (2022-11-12T13:54:30Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Overcoming I/O bottleneck in superconducting quantum computing:
multiplexed qubit control with ultra-low-power, base-temperature cryo-CMOS
multiplexer [40.37334699475035]
Large-scale superconducting quantum computing systems entail high-fidelity control and readout of qubits at millikelvin temperatures.
Cryo-electronics may offer a scalable and versatile solution to overcome this bottleneck.
Here we present an ultra-low power radio-frequency (RF) multiplexing cryo-electronics solution operating below 15 mK.
arXiv Detail & Related papers (2022-09-26T22:38:09Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Initial Design of a W-band Superconducting Kinetic Inductance Qubit
(Kineticon) [0.0]
We describe a kinetic inductance qubit operating at W-band frequencies with a nonlinear nanowire section.
operating the qubits at higher frequencies may relax the dilution refrigerator temperature requirements.
arXiv Detail & Related papers (2020-12-15T22:40:32Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.