Optimization of Energy Consumption Forecasting in Puno using Parallel Computing and ARIMA Models: An Innovative Approach to Big Data Processing
- URL: http://arxiv.org/abs/2408.00014v1
- Date: Sat, 27 Jul 2024 05:26:29 GMT
- Title: Optimization of Energy Consumption Forecasting in Puno using Parallel Computing and ARIMA Models: An Innovative Approach to Big Data Processing
- Authors: Cliver W. Vilca-Tinta, Fred Torres-Cruz, Josefh J. Quispe-Morales,
- Abstract summary: The study focuses on the execution speed, prediction accuracy, and scalability of both sequential and parallel implementations.
The findings demonstrate notable improvements in computational efficiency and data processing capabilities.
This new method provides a versatile and reliable solution for real-time predictive analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research presents an innovative use of parallel computing with the ARIMA (AutoRegressive Integrated Moving Average) model to forecast energy consumption in Peru's Puno region. The study conducts a thorough and multifaceted analysis, focusing on the execution speed, prediction accuracy, and scalability of both sequential and parallel implementations. A significant emphasis is placed on efficiently managing large datasets. The findings demonstrate notable improvements in computational efficiency and data processing capabilities through the parallel approach, all while maintaining the accuracy and integrity of predictions. This new method provides a versatile and reliable solution for real-time predictive analysis and enhances energy resource management, which is particularly crucial for developing areas. In addition to highlighting the technical advantages of parallel computing in this field, the study explores its practical impacts on energy planning and sustainable development in regions like Puno.
Related papers
- Learning Global and Local Features of Power Load Series Through Transformer and 2D-CNN: An Image-based Multi-step Forecasting Approach Incorporating Phase Space Reconstruction [1.9458156037869137]
This study proposes a novel multi-step forecasting approach by delicately integrating the PSR with neural networks to establish an end-to-end learning system.
A novel deep learning model, namely PSR-GALIEN, is designed, in which the Transformer and 2D-CNN are employed for the extraction of the global and local patterns in the image.
The results show that, compared with six state-of-the-art deep learning models, the forecasting performance of PSR-GALIEN consistently surpasses these baselines.
arXiv Detail & Related papers (2024-07-16T09:59:13Z) - Efficient Human Pose Estimation: Leveraging Advanced Techniques with MediaPipe [5.439359582541082]
This study presents significant enhancements in human pose estimation using the MediaPipe framework.
The research focuses on improving accuracy, computational efficiency, and real-time processing capabilities.
The advancements have wide-ranging applications in augmented reality, sports analytics, and healthcare.
arXiv Detail & Related papers (2024-06-21T21:00:45Z) - Exploring Artificial Intelligence Methods for Energy Prediction in
Healthcare Facilities: An In-Depth Extended Systematic Review [0.9208007322096533]
This study conducted a literature review, utilizing the PRISMA framework, of articles that employed machine learning and artificial intelligence techniques for predicting energy consumption in hospital buildings.
This review revealed a diverse range of data inputs influencing energy prediction, with occupancy and meteorological data emerging as significant predictors.
The findings underscore the immense potential of AI in optimizing hospital energy consumption but also highlight the need for more comprehensive and granular research.
arXiv Detail & Related papers (2023-11-27T13:30:20Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Adaptive Inference through Early-Exit Networks: Design, Challenges and
Directions [80.78077900288868]
We decompose the design methodology of early-exit networks to its key components and survey the recent advances in each one of them.
We position early-exiting against other efficient inference solutions and provide our insights on the current challenges and most promising future directions for research in the field.
arXiv Detail & Related papers (2021-06-09T12:33:02Z) - Deep-Learning-Based, Multi-Timescale Load Forecasting in Buildings:
Opportunities and Challenges from Research to Deployment [0.0]
Electric utilities have traditionally performed load forecasting for load pockets spanning large geographic areas.
We present a deep-learning-based load forecasting system that predicts the building load at 1-hour intervals for 18 hours in the future.
arXiv Detail & Related papers (2020-08-12T17:47:38Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z) - An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning [1.52292571922932]
Short-term solar irradiance forecasting is difficult due to the non-stationary characteristic of solar power.
We propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance.
Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites.
arXiv Detail & Related papers (2019-05-07T14:40:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.