論文の概要: Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs
- arxiv url: http://arxiv.org/abs/2408.00114v1
- Date: Wed, 31 Jul 2024 18:47:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 22:36:04.157183
- Title: Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs
- Title(参考訳): インダクティブかデダクティブか? LLMの基本的推論能力を再考する
- Authors: Kewei Cheng, Jingfeng Yang, Haoming Jiang, Zhengyang Wang, Binxuan Huang, Ruirui Li, Shiyang Li, Zheng Li, Yifan Gao, Xian Li, Bing Yin, Yizhou Sun,
- Abstract要約: 推論には2つの典型型がある: 帰納的推論(deductive reasoning)と帰納的推論(inductive reasoning)。
大規模言語モデル(LLM)の推論能力に関する広範な研究にもかかわらず、ほとんどの研究は帰納的推論と帰納的推論を厳密に区別することができなかった。
LLM推論では、帰納的または帰納的推論という、より大きな課題を引き起こします。
- 参考スコア(独自算出の注目度): 99.76347807139615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning encompasses two typical types: deductive reasoning and inductive reasoning. Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning, leading to a blending of the two. This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning? While the deductive reasoning capabilities of LLMs, (i.e. their capacity to follow instructions in reasoning tasks), have received considerable attention, their abilities in true inductive reasoning remain largely unexplored. To delve into the true inductive reasoning capabilities of LLMs, we propose a novel framework, SolverLearner. This framework enables LLMs to learn the underlying function (i.e., $y = f_w(x)$), that maps input data points $(x)$ to their corresponding output values $(y)$, using only in-context examples. By focusing on inductive reasoning and separating it from LLM-based deductive reasoning, we can isolate and investigate inductive reasoning of LLMs in its pure form via SolverLearner. Our observations reveal that LLMs demonstrate remarkable inductive reasoning capabilities through SolverLearner, achieving near-perfect performance with ACC of 1 in most cases. Surprisingly, despite their strong inductive reasoning abilities, LLMs tend to relatively lack deductive reasoning capabilities, particularly in tasks involving ``counterfactual'' reasoning.
- Abstract(参考訳): 推論には2つの典型型がある: 帰納的推論(deductive reasoning)と帰納的推論(inductive reasoning)。
LLM(Large Language Models)の推論能力に関する広範な研究にもかかわらず、ほとんどの研究は帰納的推論と帰納的推論を厳密に区別することができなかった。
LLM推論では、帰納的または帰納的推論という、より大きな課題を引き起こします。
LLMの帰納的推論能力(すなわち、推論タスクの指示に従う能力)は、かなり注目されているが、真の帰納的推論能力は、まだ明らかにされていない。
LLMの真の帰納的推論能力を明らかにするために,新しいフレームワークであるSolverLearnerを提案する。
このフレームワークはLLMが基礎となる関数(例えば$y = f_w)を学習できるようにする。
(x)$) - 入力データポイントを$にマッピングする。
(x)$ を対応する出力値 $
(y)$, in-context例のみを使用する。
帰納的推論に焦点をあて, LLMに基づく帰納的推論から分離することにより, SolverLearner による LLM の帰納的推論を分離し,研究することができる。
以上の結果から, LLMはソルバーラーナーを介して顕著な帰納的推論能力を示し, ACCが1例でほぼ完璧な性能を示した。
驚くべきことに、強い帰納的推論能力にもかかわらず、LLMは演能的推論能力に欠ける傾向にある。
関連論文リスト
- MIRAGE: Evaluating and Explaining Inductive Reasoning Process in Language Models [19.81485079689837]
帰納的および帰納的段階における大規模言語モデルの能力を評価する。
モデルが正しい帰納的規則を使わずに常に正しい推論を行う傾向があることが分かる。
帰納的推論プロセスでは、モデルは機能空間における現在のテスト例に近い観察された事実に焦点を当てる傾向があります。
論文 参考訳(メタデータ) (2024-10-12T14:12:36Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement [92.61557711360652]
言語モデル(LM)は、しばしば帰納的推論に不足する。
我々は,反復的仮説修正を通じて,LMの帰納的推論能力を体系的に研究する。
本研究は, LMの誘導的推論過程と人間とのいくつかの相違点を明らかにし, 誘導的推論タスクにおけるLMの使用の可能性と限界に光を当てる。
論文 参考訳(メタデータ) (2023-10-12T17:51:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Learning Deductive Reasoning from Synthetic Corpus based on Formal Logic [14.503982715625902]
本研究では,言語モデル(LM)に対する合成コーパスに基づくアプローチについて検討し,論理的帰納的推論能力を得る。
形式論理理論に基づく推論規則は,多段階的に組み合わせることで,他の推論規則を導出することができる。
我々は、FLDコーパスで訓練されたLMがより一般化可能な推論能力を取得することを実証的に検証した。
論文 参考訳(メタデータ) (2023-08-11T13:15:35Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - Can Pretrained Language Models (Yet) Reason Deductively? [72.9103833294272]
PLMの学習可能な推論能力(明示的推論能力)を総合的に評価する。
本研究の主目的は, PLMがまだ信頼性の高い導出的推論を行うことができないことである。
PLMは人間レベルの推論能力からは程遠いことがわかりました。
論文 参考訳(メタデータ) (2022-10-12T17:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。