論文の概要: Empirical Bayes Linked Matrix Decomposition
- arxiv url: http://arxiv.org/abs/2408.00237v1
- Date: Thu, 1 Aug 2024 02:13:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 21:55:12.808356
- Title: Empirical Bayes Linked Matrix Decomposition
- Title(参考訳): 経験的ベイズ結合マトリックス分解
- Authors: Eric F. Lock,
- Abstract要約: この問題に対する経験的変分ベイズ的アプローチを提案する。
単一行列文脈において新規な反復的計算手法について述べる。
提案手法は,下層の低ランク信号の回復に関して,異なるシナリオ下で非常によく機能することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data for several applications in diverse fields can be represented as multiple matrices that are linked across rows or columns. This is particularly common in molecular biomedical research, in which multiple molecular "omics" technologies may capture different feature sets (e.g., corresponding to rows in a matrix) and/or different sample populations (corresponding to columns). This has motivated a large body of work on integrative matrix factorization approaches that identify and decompose low-dimensional signal that is shared across multiple matrices or specific to a given matrix. We propose an empirical variational Bayesian approach to this problem that has several advantages over existing techniques, including the flexibility to accommodate shared signal over any number of row or column sets (i.e., bidimensional integration), an intuitive model-based objective function that yields appropriate shrinkage for the inferred signals, and a relatively efficient estimation algorithm with no tuning parameters. A general result establishes conditions for the uniqueness of the underlying decomposition for a broad family of methods that includes the proposed approach. For scenarios with missing data, we describe an associated iterative imputation approach that is novel for the single-matrix context and a powerful approach for "blockwise" imputation (in which an entire row or column is missing) in various linked matrix contexts. Extensive simulations show that the method performs very well under different scenarios with respect to recovering underlying low-rank signal, accurately decomposing shared and specific signals, and accurately imputing missing data. The approach is applied to gene expression and miRNA data from breast cancer tissue and normal breast tissue, for which it gives an informative decomposition of variation and outperforms alternative strategies for missing data imputation.
- Abstract(参考訳): 多様な分野における複数のアプリケーションのデータは、列や列にまたがる複数の行列として表すことができる。
これは分子生物学的研究において特に一般的であり、複数の分子「ミクス」技術は異なる特徴集合(例えば行列の行に対応する)と異なるサンプル集団(列に対応する)を捉えることができる。
これは、複数の行列で共有される、あるいは与えられた行列に特有の低次元信号を識別し分解する積分行列分解法(英語版)の多くの研究を動機付けている。
本稿では,任意の行や列集合上で共有信号に適合する柔軟性(二次元積分),推定信号の適切な縮小を導出する直感的なモデルベース目的関数,チューニングパラメータを含まない比較的効率的な推定アルゴリズムなど,既存の手法に対する実証的ベイズ的アプローチを提案する。
一般的な結果は、提案手法を含む幅広い手法群に対する基礎となる分解の特異性の条件を確立するものである。
欠落したデータを扱うシナリオでは、単一行列コンテキストで新しい反復的計算手法と、様々なリンクされた行列コンテキストで「ブロックワイズ」な計算法(行や列が欠落している場合)の強力なアプローチを記述します。
シミュレーションにより,低ランク信号の復号化,共有信号と特定信号の復号化,欠落データを正確に出力するなど,様々なシナリオで非常によく動作することを示す。
本手法は、乳癌組織および正常乳癌組織からの遺伝子発現およびmiRNAデータに適用され、変異を情報的に分解し、欠落したデータ計算のための代替戦略より優れている。
関連論文リスト
- Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - Clustering Three-Way Data with Outliers [1.0435741631709405]
行列変量正規データを異常値でクラスタリングする手法について論じる。
このアプローチは、サブセットのログライクな分布を使い、OCLUSTアルゴリズムを拡張し、反復的なアプローチを使ってアウトレイラを検出しトリムする。
論文 参考訳(メタデータ) (2023-10-08T21:27:29Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Multiple Augmented Reduced Rank Regression for Pan-Cancer Analysis [0.0]
フレキシブルな行列回帰および分解法である多重強化階数回帰(maRRR)を提案する。
我々は、ランダム行列理論によって動機付けられた構造化された核ノルムの目的を考える。
われわれはTGAの複数の癌型(すなわち膵臓)の遺伝子発現データにmaRRRを適用した。
論文 参考訳(メタデータ) (2023-08-30T21:40:58Z) - Multi-modal Multi-view Clustering based on Non-negative Matrix
Factorization [0.0]
本稿では,マルチモーダルクラスタリングアルゴリズムについて検討し,マルチモーダル・マルチビュー非負行列分解法を提案する。
実験の結果,様々なデータセットを用いて評価した提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-08-09T08:06:03Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
本稿では,運動画像分類の改善を目的とした自己回帰モデルから抽出した拡張共分散に基づく新しいフレームワークを提案する。
私たちはMOABBフレームワークを使って、いくつかのデータセットといくつかの主題でアプローチを検証します。
論文 参考訳(メタデータ) (2023-02-09T09:04:25Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z) - Bidimensional linked matrix factorization for pan-omics pan-cancer
analysis [0.802904964931021]
本稿では,2次元連結行列 BIDIFAC+ の同時分解と分解に対するフレキシブルなアプローチを提案する。
これは変動を、任意の数の行セットや列セット間で共有できる一連の低ランクなコンポーネントに分解する。
BIDIFAC+をTCGAのパン・オミクス・パン・カンサー・データに適用し、4つの異なるオミクス・プラットフォームと29の異なるがんタイプにまたがる共有および特定の変動様式を同定した。
論文 参考訳(メタデータ) (2020-02-07T03:11:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。