Redefining Lexicographical Ordering: Optimizing Pauli String Decompositions for Quantum Compiling
- URL: http://arxiv.org/abs/2408.00354v1
- Date: Thu, 1 Aug 2024 07:50:16 GMT
- Title: Redefining Lexicographical Ordering: Optimizing Pauli String Decompositions for Quantum Compiling
- Authors: Qunsheng Huang, David Winderl, Arianne Meijer-van de Griend, Richie Yeung,
- Abstract summary: We propose a novel algorithm for the synthesis of trotterized time-evolution operators.
Our synthesis procedure takes the qubit connectivity of a target quantum computer into account.
We show a significant improvement for randomized circuits and different molecular ansatzes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In quantum computing, the efficient optimization of Pauli string decompositions is a crucial aspect for the compilation of quantum circuits for many applications, such as chemistry simulations and quantum machine learning. In this paper, we propose a novel algorithm for the synthesis of trotterized time-evolution operators that results in circuits with significantly fewer gates than previous solutions. Our synthesis procedure takes the qubit connectivity of a target quantum computer into account. As a result, the generated quantum circuit does not require routing, and no additional CNOT gates are needed to run the resulting circuit on a target device. We compare our algorithm against Paulihedral and TKET, and show a significant improvement for randomized circuits and different molecular ansatzes. We also investigate the Trotter error introduced by our ordering of the terms in the Hamiltonian versus default ordering and the ordering from the baseline methods and conclude that our method on average does not increase the Trotter error.
Related papers
- Quantum Multiplexer Simplification for State Preparation [0.7270112855088837]
We propose an algorithm that detects whether a given quantum state can be factored into substates.
The simplification is done by eliminating controls of quantum multiplexers.
Considering efficiency in terms of depth and number of CNOT gates, our method is competitive with the methods in the literature.
arXiv Detail & Related papers (2024-09-09T13:53:02Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Circuit Unoptimization [0.6449786007855248]
We construct a quantum algorithmic primitive called quantum circuit unoptimization.
It makes a given quantum circuit complex by introducing some redundancies while preserving circuit equivalence.
We use quantum circuit unoptimization to generate compiler benchmarks and evaluate circuit optimization performance.
arXiv Detail & Related papers (2023-11-07T08:38:18Z) - FragQC: An Efficient Quantum Error Reduction Technique using Quantum
Circuit Fragmentation [4.2754140179767415]
We present it FragQC, a software tool that cuts a quantum circuit into sub-circuits when its error probability exceeds a certain threshold.
We achieve an increase of fidelity by 14.83% compared to direct execution without cutting the circuit, and 8.45% over the state-of-the-art ILP-based method.
arXiv Detail & Related papers (2023-09-30T17:38:31Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Efficient quantum gate decomposition via adaptive circuit compression [0.0]
The utilization of parametric two-qubit gates in the circuit design allows us to transform the discrete problem of circuit synthesis into an optimization problem over continuous variables.
We implemented the algorithm in the SQUANDER software package and benchmarked it against several state-of-the-art quantum gate synthesis tools.
arXiv Detail & Related papers (2022-03-08T22:29:31Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
We introduce two ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL.
AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics.
Our technique is generic and can be useful for a wide variety of quantum algorithms.
arXiv Detail & Related papers (2021-02-19T16:20:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.