論文の概要: Identifying the Hierarchical Emotional Areas in the Human Brain Through Information Fusion
- arxiv url: http://arxiv.org/abs/2408.00525v1
- Date: Thu, 1 Aug 2024 12:57:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 20:36:37.948149
- Title: Identifying the Hierarchical Emotional Areas in the Human Brain Through Information Fusion
- Title(参考訳): 情報融合によるヒト脳の階層的感情領域の同定
- Authors: Zhongyu Huang, Changde Du, Chaozhuo Li, Kaicheng Fu, Huiguang He,
- Abstract要約: 本研究の目的は、脳領域間の相互作用を最大化する方法についての詳細な理論グラフを同定することである。
包括的実験により、階層的な感情領域(低レベルから高レベル)が感情知覚の基本的なプロセスを促進することが明らかとなった。
本研究は, 精神構成主義者の仮説に基づく, 特定の感情の基礎となる脳のメカニズムについて, 独自の知見を提供するものである。
- 参考スコア(独自算出の注目度): 19.144416163452533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The brain basis of emotion has consistently received widespread attention, attracting a large number of studies to explore this cutting-edge topic. However, the methods employed in these studies typically only model the pairwise relationship between two brain regions, while neglecting the interactions and information fusion among multiple brain regions$\unicode{x2014}$one of the key ideas of the psychological constructionist hypothesis. To overcome the limitations of traditional methods, this study provides an in-depth theoretical analysis of how to maximize interactions and information fusion among brain regions. Building on the results of this analysis, we propose to identify the hierarchical emotional areas in the human brain through multi-source information fusion and graph machine learning methods. Comprehensive experiments reveal that the identified hierarchical emotional areas, from lower to higher levels, primarily facilitate the fundamental process of emotion perception, the construction of basic psychological operations, and the coordination and integration of these operations. Overall, our findings provide unique insights into the brain mechanisms underlying specific emotions based on the psychological constructionist hypothesis.
- Abstract(参考訳): 感情の脳の基盤は一貫して注目を集めており、この最先端のトピックを探求する多くの研究が注目されている。
しかし、これらの研究で用いられる手法は、通常は2つの脳領域間の相互関係をモデル化するだけであり、同時に複数の脳領域間の相互作用と情報融合を無視する。
従来の手法の限界を克服するため,脳領域間の相互作用と情報融合を最大化する方法について,詳細な理論的解析を行った。
本分析の結果に基づいて,マルチソース情報融合とグラフ機械学習手法を用いて,人間の脳の階層的感情領域を特定することを提案する。
包括的実験により、低レベルから高レベルまで同定された階層的な感情領域は、主に感情知覚の基本的なプロセス、基本的な心理的操作の構築、これらの操作の調整と統合を促進することが明らかとなった。
全体として、我々の研究は、心理学的構成主義者の仮説に基づいて、特定の感情の基礎となる脳のメカニズムについて独自の洞察を与えている。
関連論文リスト
- Combining psychoanalysis and computer science: an empirical study of the relationship between emotions and the Lacanian discourses [0.0]
本研究では,精神分析学とコンピュータ科学の学際的相互作用について考察する。
特に,この研究は,感情とラカン系会話の関連性を確立するために,コンピュータサイエンスの手法を適用することを目的としている。
本論文の主な貢献は、本質的には理論的(精神分析)であるが、対話型デジタルシステムにおける主要な実践的応用を促進することができる。
論文 参考訳(メタデータ) (2024-10-30T10:49:33Z) - Cross-subject Brain Functional Connectivity Analysis for Multi-task Cognitive State Evaluation [16.198003101055264]
本研究は脳機能と脳波信号とを併用し,複数の被験者の脳領域の関連性を把握し,リアルタイム認知状態を評価する。
分析と評価のために30件の被験者が取得され, 内的対象, 対人的対象, ジェンダー的基盤となる脳機能接続など, さまざまな視点で解釈される。
論文 参考訳(メタデータ) (2024-08-27T12:51:59Z) - A Comprehensive Survey on EEG-Based Emotion Recognition: A Graph-Based Perspective [12.712722204034606]
脳波に基づく感情認識は、人間の脳の感情パターンに直感的に反応することができる。
重要なトレンドは、そのような依存をカプセル化するグラフの適用である。
脳波に基づく感情認識に感情関連グラフを構築するための総合的なレビューやチュートリアルは存在しない。
論文 参考訳(メタデータ) (2024-08-12T09:29:26Z) - Individual brain parcellation: Review of methods, validations and applications [7.159138402684875]
個々のレベルでの脳機能領域の正確なマッピングは、脳機能と行動の変化を包括的に理解するために重要である。
ニューロイメージングと機械学習の技術の発展に伴い、個々の脳のパーセレーションの研究が盛んになっている。
論文 参考訳(メタデータ) (2024-07-01T05:48:05Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
ストレスと抑うつは日々のタスクにおけるエンゲージメントに影響を与え、彼らの相互作用を理解する必要性を強調します。
この調査は、ストレス、抑うつ、エンゲージメントを分析する計算手法を同時に探求した最初のものである。
論文 参考訳(メタデータ) (2024-03-09T11:16:09Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
マルチモーダルインタラクション, 感情計算, 自然言語処理において, 選ばれたカンファレンスから16,000以上の論文を調査した。
本論文では,感情関連論文910を同定し,情緒現象の役割について分析した。
我々は、人間の社会的行動や認知状態の機械的理解を高めるために、AIシステムによって感情と感情の予測がどのように使用されるかについて、限られた研究結果を得た。
論文 参考訳(メタデータ) (2023-05-18T09:08:39Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
言語の神経基盤を分解する一般的なアプローチは、個人間で異なる刺激に対する脳の反応を関連付けている。
そこで本研究では,自然刺激に曝露された被験者に対して,モデルに基づくアプローチが等価な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T15:30:21Z) - The whole brain architecture approach: Accelerating the development of
artificial general intelligence by referring to the brain [1.637145148171519]
個人が脳全体に対応するソフトウェアプログラムを設計することは困難である。
全脳アーキテクチャアプローチは、脳に触発されたAGI開発プロセスを脳の参照アーキテクチャを設計するタスクに分割する。
本研究では,仮想成分図を作成するための仮説構築手法である構造拘束型界面分解(scid)法を提案する。
論文 参考訳(メタデータ) (2021-03-06T04:58:12Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。