論文の概要: A Comprehensive Survey on EEG-Based Emotion Recognition: A Graph-Based Perspective
- arxiv url: http://arxiv.org/abs/2408.06027v2
- Date: Tue, 13 Aug 2024 06:22:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 14:16:02.798488
- Title: A Comprehensive Survey on EEG-Based Emotion Recognition: A Graph-Based Perspective
- Title(参考訳): 脳波に基づく感情認識に関する総合的調査:グラフに基づく視点
- Authors: Chenyu Liu, Xinliang Zhou, Yihao Wu, Yi Ding, Liming Zhai, Kun Wang, Ziyu Jia, Yang Liu,
- Abstract要約: 脳波に基づく感情認識は、人間の脳の感情パターンに直感的に反応することができる。
重要なトレンドは、そのような依存をカプセル化するグラフの適用である。
脳波に基づく感情認識に感情関連グラフを構築するための総合的なレビューやチュートリアルは存在しない。
- 参考スコア(独自算出の注目度): 12.712722204034606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to other modalities, electroencephalogram (EEG) based emotion recognition can intuitively respond to emotional patterns in the human brain and, therefore, has become one of the most focused tasks in affective computing. The nature of emotions is a physiological and psychological state change in response to brain region connectivity, making emotion recognition focus more on the dependency between brain regions instead of specific brain regions. A significant trend is the application of graphs to encapsulate such dependency as dynamic functional connections between nodes across temporal and spatial dimensions. Concurrently, the neuroscientific underpinnings behind this dependency endow the application of graphs in this field with a distinctive significance. However, there is neither a comprehensive review nor a tutorial for constructing emotion-relevant graphs in EEG-based emotion recognition. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of graph-related methods in this field from a methodological perspective. We propose a unified framework for graph applications in this field and categorize these methods on this basis. Finally, based on previous studies, we also present several open challenges and future directions in this field.
- Abstract(参考訳): 他のモダリティと比較すると、脳波に基づく感情認識は人間の脳の感情パターンに直感的に反応し、感情コンピューティングにおいて最も焦点を絞ったタスクの1つとなっている。
感情の性質は、脳領域の接続性に対する生理的、心理的な状態の変化であり、感情認識は特定の脳領域ではなく、脳領域間の依存性に焦点を当てる。
重要なトレンドは、時間次元と空間次元をまたいだノード間の動的機能的接続のような依存をカプセル化するグラフの適用である。
同時に、この依存の背後にある神経科学的な基盤は、この分野におけるグラフの適用を顕著な意味を持つものにしている。
しかし、脳波に基づく感情認識に感情関連グラフを構築するための総合的なレビューやチュートリアルは存在しない。
本稿では,これらの研究を包括的に調査し,方法論的観点から,この分野におけるグラフ関連手法の体系的レビューを行う。
本稿では,この分野におけるグラフアプリケーション統合フレームワークを提案し,これらの手法を分類する。
最後に, 過去の研究に基づいて, この分野におけるいくつかのオープン課題と今後の方向性を示す。
関連論文リスト
- Identifying the Hierarchical Emotional Areas in the Human Brain Through Information Fusion [19.144416163452533]
本研究の目的は、脳領域間の相互作用を最大化する方法についての詳細な理論グラフを同定することである。
包括的実験により、階層的な感情領域(低レベルから高レベル)が感情知覚の基本的なプロセスを促進することが明らかとなった。
本研究は, 精神構成主義者の仮説に基づく, 特定の感情の基礎となる脳のメカニズムについて, 独自の知見を提供するものである。
論文 参考訳(メタデータ) (2024-08-01T12:57:12Z) - Emotion Detection through Body Gesture and Face [0.0]
このプロジェクトは、非顔の手がかり、特に手、身体のジェスチャー、ジェスチャーに焦点を当てることによる感情認識の課題に対処する。
従来の感情認識システムは、主に表情分析に依存しており、ボディランゲージを通して伝達される豊かな感情情報を無視することが多い。
このプロジェクトの目的は、マシンが人間の感情をより包括的でニュアンスな方法で解釈し、反応する能力を高めることで、感情コンピューティングの分野に貢献することにある。
論文 参考訳(メタデータ) (2024-07-13T15:15:50Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
我々は、クロスオブジェクト感情認識のための訓練済みモデルに基づくMultimodal Mood Readerを開発した。
このモデルは、大規模データセットの事前学習を通じて、脳波信号の普遍的な潜在表現を学習する。
公開データセットに関する大規模な実験は、クロスオブジェクト感情認識タスクにおけるMood Readerの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T14:31:11Z) - Graph Neural Networks in EEG-based Emotion Recognition: A Survey [7.967961714421288]
重要なトレンドは、脳波に基づく感情認識のためのグラフニューラルネットワーク(GNN)を開発することである。
情動脳波の脳領域依存性は、この領域のGNNと他の時系列領域のGNNを区別する生理的基盤を持つ。
脳波に基づく感情認識におけるGNN構築のための明確なガイダンスを提供するために,フレームワークの3段階から手法を分析し,分類する。
論文 参考訳(メタデータ) (2024-02-02T04:30:58Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Progressive Graph Convolution Network for EEG Emotion Recognition [35.08010382523394]
神経科学領域の研究により、感情パターンと脳機能領域の関係が明らかになった。
脳波による感情認識では、きめ細かい感情の間には、きめ細かい感情の間により明確な境界が存在することが観察できる。
脳波の感情信号に特有の特徴を捉えるためのプログレッシブグラフ畳み込みネットワーク(PGCN)を提案する。
論文 参考訳(メタデータ) (2021-12-14T03:30:13Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Computational Emotion Analysis From Images: Recent Advances and Future
Directions [79.05003998727103]
本章では,画像感情分析(IEA)を計算的観点から導入することを目的としている。
心理学の一般的な感情表現モデルから始めます。
そして、研究者たちが解決しようとしている重要な計算問題を定義します。
論文 参考訳(メタデータ) (2021-03-19T13:33:34Z) - EmoGraph: Capturing Emotion Correlations using Graph Networks [71.53159402053392]
グラフネットワークを通じて異なる感情間の依存関係をキャプチャするEmoGraphを提案する。
EmoGraphは特にマクロF1において、強いベースラインを上回ります。
キャプチャーされた感情相関は、シングルラベルの分類作業にも有用であることを示す実験である。
論文 参考訳(メタデータ) (2020-08-21T08:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。