論文の概要: Learned Compression of Point Cloud Geometry and Attributes in a Single Model through Multimodal Rate-Control
- arxiv url: http://arxiv.org/abs/2408.00599v1
- Date: Thu, 1 Aug 2024 14:31:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 20:26:35.117989
- Title: Learned Compression of Point Cloud Geometry and Attributes in a Single Model through Multimodal Rate-Control
- Title(参考訳): 多モード速度制御による単一モデルにおける点雲形状と属性の学習圧縮
- Authors: Michael Rudolph, Aron Riemenschneider, Amr Rizk,
- Abstract要約: 我々は単一適応オートエンコーダモデルを用いて幾何学と属性の合同圧縮を学習する。
本評価は, 形状と属性に対する最先端圧縮手法に匹敵する性能を示す。
- 参考スコア(独自算出の注目度): 2.7077560296908416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud compression is essential to experience volumetric multimedia as it drastically reduces the required streaming data rates. Point attributes, specifically colors, extend the challenge of lossy compression beyond geometric representation to achieving joint reconstruction of texture and geometry. State-of-the-art methods separate geometry and attributes to compress them individually. This comes at a computational cost, requiring an encoder and a decoder for each modality. Additionally, as attribute compression methods require the same geometry for encoding and decoding, the encoder emulates the decoder-side geometry reconstruction as an input step to project and compress the attributes. In this work, we propose to learn joint compression of geometry and attributes using a single, adaptive autoencoder model, embedding both modalities into a unified latent space which is then entropy encoded. Key to the technique is to replace the search for trade-offs between rate, attribute quality and geometry quality, through conditioning the model on the desired qualities of both modalities, bypassing the need for training model ensembles. To differentiate important point cloud regions during encoding or to allow view-dependent compression for user-centered streaming, conditioning is pointwise, which allows for local quality and rate variation. Our evaluation shows comparable performance to state-of-the-art compression methods for geometry and attributes, while reducing complexity compared to related compression methods.
- Abstract(参考訳): ポイントクラウド圧縮は、必要となるストリーミングデータレートを大幅に削減するため、ボリュームマルチメディアを体験するために不可欠である。
点属性、特に色は、幾何学的表現を超えた損失圧縮の課題を拡張し、テクスチャと幾何学の合同的な再構成を達成する。
State-of-the-artメソッドは、それらを個別に圧縮する幾何学と属性を分離する。
これは計算コストがかかり、各モダリティに対してエンコーダとデコーダが必要となる。
さらに、属性圧縮法は符号化と復号のための同じ幾何学を必要とするため、エンコーダはデコーダ側の幾何再構成を入力ステップとしてエミュレートし、属性を投影し圧縮する。
本研究では,単一適応オートエンコーダモデルを用いて幾何学と属性の連成圧縮を学習し,両モードをエントロピー符号化した潜在空間に埋め込む手法を提案する。
このテクニックの鍵となるのは、両方のモダリティの望ましい品質をモデルに条件付けすることで、レート、属性品質、および幾何学的品質のトレードオフを探すことを置き換えることで、モデルのアンサンブルをトレーニングする必要をなくすことである。
エンコーディング中の重要なポイントクラウド領域を区別し、また、ユーザ中心ストリーミングに対するビュー依存圧縮を可能にし、条件付けがポイントワイズであり、局所的な品質とレート変動を可能にする。
本評価では, 関連圧縮法と比較して複雑性を低減しつつ, 形状と属性の最先端圧縮法に匹敵する性能を示した。
関連論文リスト
- Point Cloud Compression with Bits-back Coding [32.9521748764196]
本稿では,深層学習に基づく確率モデルを用いて,点雲情報のシャノンエントロピーを推定する。
点雲データセットのエントロピーを推定すると、学習されたCVAEモデルを用いて点雲の幾何学的属性を圧縮する。
本手法の新規性は,CVAEの学習潜在変数モデルを用いて点雲データを圧縮することである。
論文 参考訳(メタデータ) (2024-10-09T06:34:48Z) - End-to-end learned Lossy Dynamic Point Cloud Attribute Compression [5.717288278431968]
本研究では、エンドツーエンドの動的損失属性符号化手法を提案する。
我々は、遅延テンソルをビットストリームに符号化する自動回帰コンテキストモデルとともに、従来の潜時空間を利用するコンテキストモデルを用いる。
論文 参考訳(メタデータ) (2024-08-20T09:06:59Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
我々は、点雲の幾何学的冗長性除去に先立って、人間の幾何学的手法を利用する。
高分解能な人点雲を幾何学的先行と構造的偏差の組み合わせとして考えることができる。
提案フレームワークは,既存の学習ベースポイントクラウド圧縮手法を用いて,プレイ・アンド・プラグ方式で動作可能である。
論文 参考訳(メタデータ) (2023-05-02T10:35:20Z) - Deep probabilistic model for lossless scalable point cloud attribute
compression [2.2559617939136505]
我々は、属性を段階的にマルチスケールの潜在空間に投影するエンドツーエンドのクラウド属性符号化法(MNeT)を構築した。
MVUB と MPEG の点群に対して本手法の有効性を検証し,提案手法が最近提案した手法よりも優れており,最新の G-PCC バージョン 14 と同等であることを示す。
論文 参考訳(メタデータ) (2023-03-11T23:39:30Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - SoftPool++: An Encoder-Decoder Network for Point Cloud Completion [93.54286830844134]
本稿では,ポイントクラウド完了作業のための新しい畳み込み演算子を提案する。
提案した演算子は、最大プールやボキセル化操作を一切必要としない。
提案手法は,低解像度・高解像度の形状仕上げにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-08T15:31:36Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
圧縮ビデオの細部を復元する深層学習アーキテクチャを開発した。
これにより,従来の圧縮補正法と比較して復元精度が向上することを示す。
我々は、ビットストリームで容易に利用できる量子化データに対して、我々のモデルを条件付けする。
論文 参考訳(メタデータ) (2022-01-31T18:56:04Z) - Patch-Based Deep Autoencoder for Point Cloud Geometry Compression [8.44208490359453]
本稿では,ディープラーニングを用いたパッチベースの圧縮プロセスを提案する。
私たちはポイントクラウドをパッチに分割し、各パッチを個別に圧縮します。
復号処理では、最終的に圧縮されたパッチを完全な点クラウドに組み立てる。
論文 参考訳(メタデータ) (2021-10-18T08:59:57Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
空間特徴変換(SFT arXiv:1804.02815)に基づく多目的深部画像圧縮ネットワークを提案する。
本モデルは,任意の画素単位の品質マップによって制御される単一モデルを用いて,幅広い圧縮速度をカバーしている。
提案するフレームワークにより,様々なタスクに対してタスク対応の画像圧縮を行うことができる。
論文 参考訳(メタデータ) (2021-08-21T17:30:06Z) - Multiscale Point Cloud Geometry Compression [29.605320327889142]
本稿では,3次元ポイント・クラウド・ジオメトリを階層的に再構築するマルチスケール・ツー・エンド・ラーニング・フレームワークを提案する。
このフレームワークは、ポイントクラウド圧縮と再構成のためのスパース畳み込みベースのオートエンコーダの上に開発されている。
論文 参考訳(メタデータ) (2020-11-07T16:11:16Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。