論文の概要: Unified Geometry and Color Compression Framework for Point Clouds via Generative Diffusion Priors
- arxiv url: http://arxiv.org/abs/2503.18083v1
- Date: Sun, 23 Mar 2025 14:27:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:36:32.401759
- Title: Unified Geometry and Color Compression Framework for Point Clouds via Generative Diffusion Priors
- Title(参考訳): 生成拡散前処理による点雲の統一幾何と色圧縮フレームワーク
- Authors: Tianxin Huang, Gim Hee Lee,
- Abstract要約: テスト時統合幾何および3次元点雲の色圧縮フレームワークを提案する。
本手法は,形状や色を圧縮する上で,既存のベースラインに比べて優れた性能を示す。
- 参考スコア(独自算出の注目度): 58.93377653375906
- License:
- Abstract: With the growth of 3D applications and the rapid increase in sensor-collected 3D point cloud data, there is a rising demand for efficient compression algorithms. Most existing learning-based compression methods handle geometry and color attributes separately, treating them as distinct tasks, making these methods challenging to apply directly to point clouds with colors. Besides, the limited capacities of training datasets also limit their generalizability across points with different distributions. In this work, we introduce a test-time unified geometry and color compression framework of 3D point clouds. Instead of training a compression model based on specific datasets, we adapt a pre-trained generative diffusion model to compress original colored point clouds into sparse sets, termed 'seeds', using prompt tuning. Decompression is then achieved through multiple denoising steps with separate sampling processes. Experiments on objects and indoor scenes demonstrate that our method has superior performances compared to existing baselines for the compression of geometry and color.
- Abstract(参考訳): 3Dアプリケーションの増加とセンサによる3Dポイントクラウドデータの急速な増加により、効率的な圧縮アルゴリズムの需要が高まっている。
既存の学習ベースの圧縮手法の多くは、幾何学と色属性を別々に扱い、それらを異なるタスクとして扱うため、色のある点雲に直接適用することは困難である。
さらに、訓練データセットの限られた能力は、異なる分布を持つ点間の一般化性も制限する。
本研究では,3次元点雲の時間統合幾何および色圧縮フレームワークを提案する。
特定のデータセットに基づいて圧縮モデルをトレーニングする代わりに、事前学習された生成拡散モデルを適用して、原色の点雲を「シード」と呼ばれるスパース集合に圧縮し、即時チューニングする。
減圧は、別々のサンプリングプロセスで複数の復調ステップによって達成される。
オブジェクトや屋内のシーンでの実験では、既存の幾何学や色を圧縮するためのベースラインに比べて、我々の手法の方が優れた性能を示している。
関連論文リスト
- Implicit Neural Compression of Point Clouds [58.45774938982386]
NeRC$textbf3$は、暗黙の神経表現を利用して、幾何学と属性の両方を扱う新しいポイントクラウド圧縮フレームワークである。
動的点雲の場合、4D-NeRC$textbf3$は最先端のG-PCCやV-PCC標準よりも優れた幾何圧縮を示す。
論文 参考訳(メタデータ) (2024-12-11T03:22:00Z) - Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D視覚化技術は、私たちがデジタルコンテンツと対話する方法を根本的に変えてきた。
ポイントクラウドの大規模データサイズは、データ圧縮において大きな課題を呈している。
そこで我々はPCACと差別化可能なレンダリングをシームレスに統合するエンドツーエンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-12T16:12:51Z) - 3D Point Cloud Compression with Recurrent Neural Network and Image
Compression Methods [0.0]
多くのAVアプリケーションでは、LiDARポイントクラウドデータの保存と送信が不可欠である。
データの幅と秩序のない構造のため、ポイントクラウドデータを低ボリュームに圧縮することは困難である。
圧縮アルゴリズムが空間相関を効率的に活用できる新しい3D-to-2D変換を提案する。
論文 参考訳(メタデータ) (2024-02-18T19:08:19Z) - PIVOT-Net: Heterogeneous Point-Voxel-Tree-based Framework for Point
Cloud Compression [8.778300313732027]
異種クラウド圧縮(PCC)フレームワークを提案する。
私たちは、典型的なポイントクラウド表現 -- ポイントベース、ボクセルベース、ツリーベース表現 -- と関連するバックボーンを統一します。
本稿では,デコードのためのコンテキスト対応アップサンプリングと,機能集約のための拡張ボクセルトランスフォーマーによりフレームワークを増強する。
論文 参考訳(メタデータ) (2024-02-11T16:57:08Z) - 3D Compression Using Neural Fields [90.24458390334203]
我々は3次元データに対する新しいNFベースの圧縮アルゴリズムを提案する。
本手法は,メッシュだけでなく3次元点雲上の幾何学的圧縮も優れていることを示す。
圧縮アルゴリズムを拡張して3Dデータの幾何と属性(色など)を圧縮するのは簡単である。
論文 参考訳(メタデータ) (2023-11-21T21:36:09Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
我々は、点雲の幾何学的冗長性除去に先立って、人間の幾何学的手法を利用する。
高分解能な人点雲を幾何学的先行と構造的偏差の組み合わせとして考えることができる。
提案フレームワークは,既存の学習ベースポイントクラウド圧縮手法を用いて,プレイ・アンド・プラグ方式で動作可能である。
論文 参考訳(メタデータ) (2023-05-02T10:35:20Z) - GQE-Net: A Graph-based Quality Enhancement Network for Point Cloud Color
Attribute [51.4803148196217]
本稿では,点雲の色歪みを低減するため,グラフベースの品質向上ネットワーク(GQE-Net)を提案する。
GQE-Netは、幾何学情報を補助入力とグラフ畳み込みブロックとして使用し、局所的な特徴を効率的に抽出する。
実験結果から,本手法は最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2023-03-24T02:33:45Z) - GRASP-Net: Geometric Residual Analysis and Synthesis for Point Cloud
Compression [16.98171403698783]
損失点クラウド幾何圧縮のための深層学習を用いた異種アプローチを提案する。
具体的には、粗い点雲上に存在する不規則な特徴に局所的詳細を変換するために、点ベースネットワークを適用する。
論文 参考訳(メタデータ) (2022-09-09T17:09:02Z) - Variable Rate Compression for Raw 3D Point Clouds [5.107705550575662]
そこで本研究では,生の3Dポイントクラウドデータを用いた新しい可変レート深部圧縮アーキテクチャを提案する。
我々のネットワークは、ポイントクラウドを明示的に処理し、圧縮された記述を生成することができる。
論文 参考訳(メタデータ) (2022-02-28T15:15:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。